多维参数空间下空气处理钙钛矿太阳能电池的自主优化

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jiyun Zhang, Vincent M. Le Corre, Jianchang Wu, Tian Du, Tobias Osterrieder, Kaicheng Zhang, Handan Zhang, Larry Lüer, Jens Hauch, Christoph J. Brabec
{"title":"多维参数空间下空气处理钙钛矿太阳能电池的自主优化","authors":"Jiyun Zhang, Vincent M. Le Corre, Jianchang Wu, Tian Du, Tobias Osterrieder, Kaicheng Zhang, Handan Zhang, Larry Lüer, Jens Hauch, Christoph J. Brabec","doi":"10.1002/aenm.202404957","DOIUrl":null,"url":null,"abstract":"Traditional optimization methods often face challenges in exploring complex process parameter spaces, which typically result in suboptimal local maxima. Here an autonomous framework driven by a machine learning (ML)-guided automated platform is introduced to optimize the fabrication conditions of additive- and passivation-free perovskite solar cells (PSCs) under ambient conditions. By effectively exploring a 6D parameter space, this method identifies five parameter sets achieving efficiencies above 23%, with a peak efficiency of 23.7% with limited experimental budgets. Feature importance analysis indicates that the rotation speeds during the first and second steps of perovskite processing are the most influential factors affecting device performance, thereby meriting prioritization in the optimization efforts. These results demonstrate the exceptional capability of the autonomous framework in addressing complex process parameter optimization challenges and its potential to advance perovskite photovoltaic technology. Beyond PSCs, this work provides a reliable and comprehensive strategy for optimizing solution-processed semiconductors and highlights the broader applications of autonomous methodologies in materials science.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"26 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Optimization of Air-Processed Perovskite Solar Cell in a Multidimensional Parameter Space\",\"authors\":\"Jiyun Zhang, Vincent M. Le Corre, Jianchang Wu, Tian Du, Tobias Osterrieder, Kaicheng Zhang, Handan Zhang, Larry Lüer, Jens Hauch, Christoph J. Brabec\",\"doi\":\"10.1002/aenm.202404957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional optimization methods often face challenges in exploring complex process parameter spaces, which typically result in suboptimal local maxima. Here an autonomous framework driven by a machine learning (ML)-guided automated platform is introduced to optimize the fabrication conditions of additive- and passivation-free perovskite solar cells (PSCs) under ambient conditions. By effectively exploring a 6D parameter space, this method identifies five parameter sets achieving efficiencies above 23%, with a peak efficiency of 23.7% with limited experimental budgets. Feature importance analysis indicates that the rotation speeds during the first and second steps of perovskite processing are the most influential factors affecting device performance, thereby meriting prioritization in the optimization efforts. These results demonstrate the exceptional capability of the autonomous framework in addressing complex process parameter optimization challenges and its potential to advance perovskite photovoltaic technology. Beyond PSCs, this work provides a reliable and comprehensive strategy for optimizing solution-processed semiconductors and highlights the broader applications of autonomous methodologies in materials science.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202404957\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404957","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的优化方法在探索复杂的工艺参数空间时往往面临挑战,通常会导致局部极值不优。本文介绍了一个由机器学习(ML)引导的自动化平台驱动的自主框架,用于优化环境条件下无添加剂和无钝化钙钛矿太阳能电池(PSCs)的制造条件。通过有效地探索6D参数空间,该方法确定了五个效率超过23%的参数集,在有限的实验预算下,峰值效率为23.7%。特征重要性分析表明,钙钛矿加工第一步和第二步的转速是影响器件性能的最大因素,因此在优化工作中应优先考虑。这些结果证明了自主框架在解决复杂工艺参数优化挑战方面的卓越能力,以及它在推进钙钛矿光伏技术方面的潜力。除了psc之外,这项工作还为优化解决方案加工半导体提供了可靠而全面的策略,并突出了自主方法在材料科学中的更广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autonomous Optimization of Air-Processed Perovskite Solar Cell in a Multidimensional Parameter Space

Autonomous Optimization of Air-Processed Perovskite Solar Cell in a Multidimensional Parameter Space
Traditional optimization methods often face challenges in exploring complex process parameter spaces, which typically result in suboptimal local maxima. Here an autonomous framework driven by a machine learning (ML)-guided automated platform is introduced to optimize the fabrication conditions of additive- and passivation-free perovskite solar cells (PSCs) under ambient conditions. By effectively exploring a 6D parameter space, this method identifies five parameter sets achieving efficiencies above 23%, with a peak efficiency of 23.7% with limited experimental budgets. Feature importance analysis indicates that the rotation speeds during the first and second steps of perovskite processing are the most influential factors affecting device performance, thereby meriting prioritization in the optimization efforts. These results demonstrate the exceptional capability of the autonomous framework in addressing complex process parameter optimization challenges and its potential to advance perovskite photovoltaic technology. Beyond PSCs, this work provides a reliable and comprehensive strategy for optimizing solution-processed semiconductors and highlights the broader applications of autonomous methodologies in materials science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信