n型Bi2(Te, Se)3 .晶格化和插层化在发电和热电冷却中的应用

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jiayi Peng, Dongrui Liu, Shulin Bai, Yi Wen, Huiqiang Liang, Lizhong Su, Xin Qian, Dongyang Wang, Xiang Gao, Zhihai Ding, Qian Cao, Yanling Pei, Bingchao Qin, Li-Dong Zhao
{"title":"n型Bi2(Te, Se)3 .晶格化和插层化在发电和热电冷却中的应用","authors":"Jiayi Peng, Dongrui Liu, Shulin Bai, Yi Wen, Huiqiang Liang, Lizhong Su, Xin Qian, Dongyang Wang, Xiang Gao, Zhihai Ding, Qian Cao, Yanling Pei, Bingchao Qin, Li-Dong Zhao","doi":"10.1002/aenm.202404653","DOIUrl":null,"url":null,"abstract":"Bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) has been the only commercialized material in thermoelectric cooling and waste heat recovery. However, the inferior performance for n-type Bi<sub>2</sub>(Te, Se)<sub>3</sub> largely restricts the practical applications. In this study, additional Ag atoms are introduced utilizing lattice plainification strategy to enhance electrical performance. Observations indicate that Ag atoms situate in the van der Waals layers, acting as n-type dopants to increase carrier concentration, bonding with adjacent Te as intercalating atoms to form electron transport channels, while also suppressing the formation of Te vacancies to boost carrier mobility, substantially favoring carrier transport. Consequently, Bi<sub>2</sub>Te<sub>2.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub>+0.3%Ag achieves an excellent room-temperature <i>ZT</i> of ≈1.1, while Bi<sub>2</sub>Te2<sub>.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub> + 0.4%Ag demonstrates a higher average <i>ZT</i> of ≈1.1 at 300–523 K. Furthermore, a full-scale thermoelectric cooler using optimized Bi<sub>2</sub>Te<sub>2.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub>+0.3%Ag combined with commercial p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> has achieved a maximum cooling temperature difference (Δ<i>T</i><sub>max</sub>) of ≈68.3 K at 300 K and a larger Δ<i>T</i><sub>max</sub> of ≈84.8 K at 343 K. Additionally, the Bi<sub>2</sub>Te<sub>2.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub> + 0.4%Ag/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>-based power generator realizes a conversion efficiency of ≈6.0% under a Δ<i>T</i> of ≈240 K. These results outperform commercial Bi<sub>2</sub>Te<sub>3</sub>-based devices, illustrating the effectiveness of lattice plainification for Bi<sub>2</sub>Te<sub>3</sub>-based thermoelectrics.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"32 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice Plainification and Intercalation Advances Power Generation and Thermoelectric Cooling in n-type Bi2(Te, Se)3\",\"authors\":\"Jiayi Peng, Dongrui Liu, Shulin Bai, Yi Wen, Huiqiang Liang, Lizhong Su, Xin Qian, Dongyang Wang, Xiang Gao, Zhihai Ding, Qian Cao, Yanling Pei, Bingchao Qin, Li-Dong Zhao\",\"doi\":\"10.1002/aenm.202404653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) has been the only commercialized material in thermoelectric cooling and waste heat recovery. However, the inferior performance for n-type Bi<sub>2</sub>(Te, Se)<sub>3</sub> largely restricts the practical applications. In this study, additional Ag atoms are introduced utilizing lattice plainification strategy to enhance electrical performance. Observations indicate that Ag atoms situate in the van der Waals layers, acting as n-type dopants to increase carrier concentration, bonding with adjacent Te as intercalating atoms to form electron transport channels, while also suppressing the formation of Te vacancies to boost carrier mobility, substantially favoring carrier transport. Consequently, Bi<sub>2</sub>Te<sub>2.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub>+0.3%Ag achieves an excellent room-temperature <i>ZT</i> of ≈1.1, while Bi<sub>2</sub>Te2<sub>.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub> + 0.4%Ag demonstrates a higher average <i>ZT</i> of ≈1.1 at 300–523 K. Furthermore, a full-scale thermoelectric cooler using optimized Bi<sub>2</sub>Te<sub>2.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub>+0.3%Ag combined with commercial p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> has achieved a maximum cooling temperature difference (Δ<i>T</i><sub>max</sub>) of ≈68.3 K at 300 K and a larger Δ<i>T</i><sub>max</sub> of ≈84.8 K at 343 K. Additionally, the Bi<sub>2</sub>Te<sub>2.79</sub>Se<sub>0.21</sub>I<sub>0.004</sub> + 0.4%Ag/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>-based power generator realizes a conversion efficiency of ≈6.0% under a Δ<i>T</i> of ≈240 K. These results outperform commercial Bi<sub>2</sub>Te<sub>3</sub>-based devices, illustrating the effectiveness of lattice plainification for Bi<sub>2</sub>Te<sub>3</sub>-based thermoelectrics.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202404653\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404653","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碲化铋(Bi2Te3)是热电冷却和废热回收中唯一商业化的材料。然而,n型Bi2(Te, Se)3性能较差,很大程度上制约了其实际应用。在本研究中,利用晶格平化策略引入额外的银原子来提高电性能。观察结果表明,银原子位于范德华层中,作为n型掺杂剂增加载流子浓度,与相邻的Te作为插层原子结合形成电子传递通道,同时也抑制Te空位的形成以提高载流子的迁移率,大大有利于载流子的传输。因此,Bi2Te2.79Se0.21I0.004+0.3%Ag的室温ZT为≈1.1,而Bi2Te2.79Se0.21I0.004+ 0.4%Ag在300-523 K时的平均ZT为≈1.1。此外,采用优化的Bi2Te2.79Se0.21I0.004+0.3%Ag与商业p型Bi0.5Sb1.5Te3结合的全尺寸热电冷却器在300 K时达到了最大冷却温差(ΔTmax)≈68.3 K,在343 K时达到了更大的ΔTmax≈84.8 K。此外,基于Bi2Te2.79Se0.21I0.004 + 0.4%Ag/ bi0.5 sb1.5 te3的发电机在ΔT≈240 K下的转换效率为≈6.0%。这些结果优于基于bi2te3的商用器件,说明了基于bi2te3的热电器件晶格化的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lattice Plainification and Intercalation Advances Power Generation and Thermoelectric Cooling in n-type Bi2(Te, Se)3

Lattice Plainification and Intercalation Advances Power Generation and Thermoelectric Cooling in n-type Bi2(Te, Se)3
Bismuth telluride (Bi2Te3) has been the only commercialized material in thermoelectric cooling and waste heat recovery. However, the inferior performance for n-type Bi2(Te, Se)3 largely restricts the practical applications. In this study, additional Ag atoms are introduced utilizing lattice plainification strategy to enhance electrical performance. Observations indicate that Ag atoms situate in the van der Waals layers, acting as n-type dopants to increase carrier concentration, bonding with adjacent Te as intercalating atoms to form electron transport channels, while also suppressing the formation of Te vacancies to boost carrier mobility, substantially favoring carrier transport. Consequently, Bi2Te2.79Se0.21I0.004+0.3%Ag achieves an excellent room-temperature ZT of ≈1.1, while Bi2Te2.79Se0.21I0.004 + 0.4%Ag demonstrates a higher average ZT of ≈1.1 at 300–523 K. Furthermore, a full-scale thermoelectric cooler using optimized Bi2Te2.79Se0.21I0.004+0.3%Ag combined with commercial p-type Bi0.5Sb1.5Te3 has achieved a maximum cooling temperature difference (ΔTmax) of ≈68.3 K at 300 K and a larger ΔTmax of ≈84.8 K at 343 K. Additionally, the Bi2Te2.79Se0.21I0.004 + 0.4%Ag/Bi0.5Sb1.5Te3-based power generator realizes a conversion efficiency of ≈6.0% under a ΔT of ≈240 K. These results outperform commercial Bi2Te3-based devices, illustrating the effectiveness of lattice plainification for Bi2Te3-based thermoelectrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信