3D电池开发的性能指标和机理考虑

IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kelly Nieto, Daniel S. Windsor, Bairav S. Vishnugopi, Partha P. Mukherjee, Amy L. Prieto
{"title":"3D电池开发的性能指标和机理考虑","authors":"Kelly Nieto, Daniel S. Windsor, Bairav S. Vishnugopi, Partha P. Mukherjee, Amy L. Prieto","doi":"10.1038/s41570-024-00659-2","DOIUrl":null,"url":null,"abstract":"<p>There is an urgent need for improved energy storage devices to enable advances in markets ranging from small-scale applications (such as portable electronic devices) to large-scale energy storage for transportation and electric-grid energy. Next-generation batteries must be characterized by high energy density, high power density, fast charging capabilities, operation over a wide temperature range and safety. To achieve such ambitious performance metrics, creative solutions that synergistically combine state-of-the-art material systems with advanced architectures must be developed. The development of 3D batteries is a promising solution for achieving these targets. However, considerable challenges remain related to integrating the various components of a battery into an architecture that is truly 3D. In this Review, we describe the status of 3D batteries, highlight key advances in terms of mechanistic insights and relevant performance descriptors, and suggest future steps for translating current concepts into commercially relevant solutions.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"68 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance metrics and mechanistic considerations for the development of 3D batteries\",\"authors\":\"Kelly Nieto, Daniel S. Windsor, Bairav S. Vishnugopi, Partha P. Mukherjee, Amy L. Prieto\",\"doi\":\"10.1038/s41570-024-00659-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is an urgent need for improved energy storage devices to enable advances in markets ranging from small-scale applications (such as portable electronic devices) to large-scale energy storage for transportation and electric-grid energy. Next-generation batteries must be characterized by high energy density, high power density, fast charging capabilities, operation over a wide temperature range and safety. To achieve such ambitious performance metrics, creative solutions that synergistically combine state-of-the-art material systems with advanced architectures must be developed. The development of 3D batteries is a promising solution for achieving these targets. However, considerable challenges remain related to integrating the various components of a battery into an architecture that is truly 3D. In this Review, we describe the status of 3D batteries, highlight key advances in terms of mechanistic insights and relevant performance descriptors, and suggest future steps for translating current concepts into commercially relevant solutions.</p><figure></figure>\",\"PeriodicalId\":18849,\"journal\":{\"name\":\"Nature reviews. Chemistry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature reviews. Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41570-024-00659-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-024-00659-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

迫切需要改进储能设备,以促进从小型应用(如便携式电子设备)到运输和电网能源的大规模储能市场的发展。下一代电池必须具有高能量密度、高功率密度、快速充电能力、宽温度范围和安全性等特点。为了实现如此雄心勃勃的性能指标,必须开发创造性的解决方案,将最先进的材料系统与先进的架构协同结合起来。3D电池的发展是实现这些目标的一个有希望的解决方案。然而,将电池的各种组件集成到真正的3D架构中仍然存在相当大的挑战。在这篇综述中,我们描述了3D电池的现状,强调了机械见解和相关性能描述符方面的关键进展,并提出了将当前概念转化为商业相关解决方案的未来步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance metrics and mechanistic considerations for the development of 3D batteries

Performance metrics and mechanistic considerations for the development of 3D batteries

There is an urgent need for improved energy storage devices to enable advances in markets ranging from small-scale applications (such as portable electronic devices) to large-scale energy storage for transportation and electric-grid energy. Next-generation batteries must be characterized by high energy density, high power density, fast charging capabilities, operation over a wide temperature range and safety. To achieve such ambitious performance metrics, creative solutions that synergistically combine state-of-the-art material systems with advanced architectures must be developed. The development of 3D batteries is a promising solution for achieving these targets. However, considerable challenges remain related to integrating the various components of a battery into an architecture that is truly 3D. In this Review, we describe the status of 3D batteries, highlight key advances in terms of mechanistic insights and relevant performance descriptors, and suggest future steps for translating current concepts into commercially relevant solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature reviews. Chemistry
Nature reviews. Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
52.80
自引率
0.80%
发文量
88
期刊介绍: Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信