Yizhang Wu, Jie Wang, Gongkai Yuan, Yanze Chen, Kun Liang, Dingyi Yang, Yihan Liu, Wei Luo, Sicheng Xing, Yici Zou, Jingyan Dong, Aimei Zhang, Aaron D. Franklin, Yong Wang, Wubin Bai
{"title":"二维过渡金属中的对称工程实现可重构P型和n型场效应管","authors":"Yizhang Wu, Jie Wang, Gongkai Yuan, Yanze Chen, Kun Liang, Dingyi Yang, Yihan Liu, Wei Luo, Sicheng Xing, Yici Zou, Jingyan Dong, Aimei Zhang, Aaron D. Franklin, Yong Wang, Wubin Bai","doi":"10.1021/acs.nanolett.4c05677","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) transition metals enable the elimination of metal-induced gap states and Fermi-level pinning in field-effect transistors (FETs), offering an advantage over conventional metal contacts. However, transition metal substrates typically exhibit nonoriented behaviors, leading to the inability to achieve monolingual responses with P- or N-type semiconductors. Here we devise symmetry engineering in an oxidized architectural MXene, termed OXene, which implements the exploiting and coupling of additional out-of-plane electron conduction and built-in polar structures. OXene combines oriented inhibitory and excitatory characteristics to achieve reconfigurable FET substrates, leveraging the modulation carrier dynamics at the metal–semiconductor interface. By coupling OXene with MXene, we achieve complementary semiconductor responses that introduce an additional dimension of programmability in logic configurations.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"26 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry Engineering in a 2D Transition Metal Enables Reconfigurable P- and N-Type FETs\",\"authors\":\"Yizhang Wu, Jie Wang, Gongkai Yuan, Yanze Chen, Kun Liang, Dingyi Yang, Yihan Liu, Wei Luo, Sicheng Xing, Yici Zou, Jingyan Dong, Aimei Zhang, Aaron D. Franklin, Yong Wang, Wubin Bai\",\"doi\":\"10.1021/acs.nanolett.4c05677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) transition metals enable the elimination of metal-induced gap states and Fermi-level pinning in field-effect transistors (FETs), offering an advantage over conventional metal contacts. However, transition metal substrates typically exhibit nonoriented behaviors, leading to the inability to achieve monolingual responses with P- or N-type semiconductors. Here we devise symmetry engineering in an oxidized architectural MXene, termed OXene, which implements the exploiting and coupling of additional out-of-plane electron conduction and built-in polar structures. OXene combines oriented inhibitory and excitatory characteristics to achieve reconfigurable FET substrates, leveraging the modulation carrier dynamics at the metal–semiconductor interface. By coupling OXene with MXene, we achieve complementary semiconductor responses that introduce an additional dimension of programmability in logic configurations.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05677\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05677","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Symmetry Engineering in a 2D Transition Metal Enables Reconfigurable P- and N-Type FETs
Two-dimensional (2D) transition metals enable the elimination of metal-induced gap states and Fermi-level pinning in field-effect transistors (FETs), offering an advantage over conventional metal contacts. However, transition metal substrates typically exhibit nonoriented behaviors, leading to the inability to achieve monolingual responses with P- or N-type semiconductors. Here we devise symmetry engineering in an oxidized architectural MXene, termed OXene, which implements the exploiting and coupling of additional out-of-plane electron conduction and built-in polar structures. OXene combines oriented inhibitory and excitatory characteristics to achieve reconfigurable FET substrates, leveraging the modulation carrier dynamics at the metal–semiconductor interface. By coupling OXene with MXene, we achieve complementary semiconductor responses that introduce an additional dimension of programmability in logic configurations.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.