CsPbBr3量子点/Cu-BTC核壳光催化剂的高催化活性和稳定性

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuanming Hou, Yanqing Zhang, Shilong Jiao, Jingyi Qin, Luoyu Liu, Zhengzheng Xie, Zhongjie Guan, Jianjun Yang, Qiuye Li and Xianwei Fu
{"title":"CsPbBr3量子点/Cu-BTC核壳光催化剂的高催化活性和稳定性","authors":"Yuanming Hou, Yanqing Zhang, Shilong Jiao, Jingyi Qin, Luoyu Liu, Zhengzheng Xie, Zhongjie Guan, Jianjun Yang, Qiuye Li and Xianwei Fu","doi":"10.1039/D4TA07190E","DOIUrl":null,"url":null,"abstract":"<p >Metal halide perovskites show great potential in photocatalysis, while intrinsic instability seriously hinders their application in photocatalytic CO<small><sub>2</sub></small> reduction. Coincidentally, metal–organic frameworks (MOFs) have garnered immense interest due to their unique characteristics of selective CO<small><sub>2</sub></small> absorption/activation, a large specific surface area, and highly active metal centers. Herein, <em>in situ</em> growth of a Cu-BTC coating on the surface of CsPbBr<small><sub>3</sub></small> quantum dots (CPB QDs) provides an effective photocatalyst for CO<small><sub>2</sub></small> reduction. The CPB QDs/Cu-BTC composites exhibit significant enhancements in moisture stability, CO<small><sub>2</sub></small> capture and activation capacity, and charge separation efficiency. Therefore, the CPB QDs/Cu-BTC heterojunction exhibits an enhanced CO production rate of 47.82 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which is 2.2- and 6.8-fold that of pristine CPB QDs and Cu-BTC, respectively. Moreover, a high CO selectivity of up to ∼100% is achieved. Based on <em>in situ</em> diffuse reflectance infrared Fourier transform (DRIFTS) spectra, CPB QDs/Cu-BTC composites facilitate the formation of HCO<small><sub>3</sub></small><small><sup>−</sup></small> and ˙CO<small><sub>2</sub></small><small><sup>−</sup></small> intermediates for converting CO<small><sub>2</sub></small> to CO through an adsorbed *COOH intermediate. This study sets up a new strategy to design excellent perovskite/MOF-based catalysts for promising catalysis.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 7","pages":" 5007-5016"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High catalytic activity and stability of visible-light-driven CO2 reduction via CsPbBr3 QDs/Cu-BTC core–shell photocatalysts†\",\"authors\":\"Yuanming Hou, Yanqing Zhang, Shilong Jiao, Jingyi Qin, Luoyu Liu, Zhengzheng Xie, Zhongjie Guan, Jianjun Yang, Qiuye Li and Xianwei Fu\",\"doi\":\"10.1039/D4TA07190E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal halide perovskites show great potential in photocatalysis, while intrinsic instability seriously hinders their application in photocatalytic CO<small><sub>2</sub></small> reduction. Coincidentally, metal–organic frameworks (MOFs) have garnered immense interest due to their unique characteristics of selective CO<small><sub>2</sub></small> absorption/activation, a large specific surface area, and highly active metal centers. Herein, <em>in situ</em> growth of a Cu-BTC coating on the surface of CsPbBr<small><sub>3</sub></small> quantum dots (CPB QDs) provides an effective photocatalyst for CO<small><sub>2</sub></small> reduction. The CPB QDs/Cu-BTC composites exhibit significant enhancements in moisture stability, CO<small><sub>2</sub></small> capture and activation capacity, and charge separation efficiency. Therefore, the CPB QDs/Cu-BTC heterojunction exhibits an enhanced CO production rate of 47.82 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which is 2.2- and 6.8-fold that of pristine CPB QDs and Cu-BTC, respectively. Moreover, a high CO selectivity of up to ∼100% is achieved. Based on <em>in situ</em> diffuse reflectance infrared Fourier transform (DRIFTS) spectra, CPB QDs/Cu-BTC composites facilitate the formation of HCO<small><sub>3</sub></small><small><sup>−</sup></small> and ˙CO<small><sub>2</sub></small><small><sup>−</sup></small> intermediates for converting CO<small><sub>2</sub></small> to CO through an adsorbed *COOH intermediate. This study sets up a new strategy to design excellent perovskite/MOF-based catalysts for promising catalysis.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 7\",\"pages\":\" 5007-5016\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07190e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07190e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿在光催化方面显示出巨大的潜力,但其固有的不稳定性严重阻碍了其在光催化CO2还原中的应用。巧合的是,金属有机框架(mof)由于其选择性CO2吸收/活化、大比表面积和高活性金属中心的独特特性而获得了极大的兴趣。在CsPbBr3量子点(CPB QDs)表面原位生长Cu-BTC涂层可作为CO2还原的有效光催化剂。CPB量子点/Cu-BTC复合材料在水分稳定性、CO2捕获和活化能力以及电荷分离效率方面均有显著提高。因此,CPB QDs/Cu-BTC异质结的CO产率提高了47.82µmol g−1 h−1,分别是原始CPB QDs和Cu-BTC的2.2倍和6.8倍。此外,还实现了高达100%的CO选择性。基于原位漫反射红外傅里叶变换(DRIFTS)光谱,CPB QDs/Cu-BTC复合材料促进HCO3-和•CO2-中间体的形成,通过吸附的*COOH中间体将CO2转化为CO。本研究为设计具有良好催化前景的钙钛矿/ mof基催化剂提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High catalytic activity and stability of visible-light-driven CO2 reduction via CsPbBr3 QDs/Cu-BTC core–shell photocatalysts†

High catalytic activity and stability of visible-light-driven CO2 reduction via CsPbBr3 QDs/Cu-BTC core–shell photocatalysts†

Metal halide perovskites show great potential in photocatalysis, while intrinsic instability seriously hinders their application in photocatalytic CO2 reduction. Coincidentally, metal–organic frameworks (MOFs) have garnered immense interest due to their unique characteristics of selective CO2 absorption/activation, a large specific surface area, and highly active metal centers. Herein, in situ growth of a Cu-BTC coating on the surface of CsPbBr3 quantum dots (CPB QDs) provides an effective photocatalyst for CO2 reduction. The CPB QDs/Cu-BTC composites exhibit significant enhancements in moisture stability, CO2 capture and activation capacity, and charge separation efficiency. Therefore, the CPB QDs/Cu-BTC heterojunction exhibits an enhanced CO production rate of 47.82 μmol g−1 h−1, which is 2.2- and 6.8-fold that of pristine CPB QDs and Cu-BTC, respectively. Moreover, a high CO selectivity of up to ∼100% is achieved. Based on in situ diffuse reflectance infrared Fourier transform (DRIFTS) spectra, CPB QDs/Cu-BTC composites facilitate the formation of HCO3 and ˙CO2 intermediates for converting CO2 to CO through an adsorbed *COOH intermediate. This study sets up a new strategy to design excellent perovskite/MOF-based catalysts for promising catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信