{"title":"内含子变异通过破坏分支点序列增加帕金森病风险","authors":"","doi":"10.1038/s41594-024-01424-1","DOIUrl":null,"url":null,"abstract":"A genetic variant specific to people of African ancestry increases the risk of neurodegenerative diseases, such as Parkinson disease (PD). This variant occurs in a noncoding region and interferes with the splicing of mRNA transcripts, resulting in lowered protein levels and activity. This work reveals a novel therapeutic target in an underserved and underrepresented population.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 1","pages":"12-13"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intronic variant increases Parkinson disease risk by disrupting branchpoint sequence\",\"authors\":\"\",\"doi\":\"10.1038/s41594-024-01424-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic variant specific to people of African ancestry increases the risk of neurodegenerative diseases, such as Parkinson disease (PD). This variant occurs in a noncoding region and interferes with the splicing of mRNA transcripts, resulting in lowered protein levels and activity. This work reveals a novel therapeutic target in an underserved and underrepresented population.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"32 1\",\"pages\":\"12-13\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01424-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01424-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intronic variant increases Parkinson disease risk by disrupting branchpoint sequence
A genetic variant specific to people of African ancestry increases the risk of neurodegenerative diseases, such as Parkinson disease (PD). This variant occurs in a noncoding region and interferes with the splicing of mRNA transcripts, resulting in lowered protein levels and activity. This work reveals a novel therapeutic target in an underserved and underrepresented population.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.