宏基因组免疫球蛋白测序揭示了健康人体肠道微生物菌株的IgA包被

IF 20.5 1区 生物学 Q1 MICROBIOLOGY
Matthew R. Olm, Sean P. Spencer, Tadashi Takeuchi, Evelyn Lemus Silva, Justin L. Sonnenburg
{"title":"宏基因组免疫球蛋白测序揭示了健康人体肠道微生物菌株的IgA包被","authors":"Matthew R. Olm, Sean P. Spencer, Tadashi Takeuchi, Evelyn Lemus Silva, Justin L. Sonnenburg","doi":"10.1038/s41564-024-01887-4","DOIUrl":null,"url":null,"abstract":"IgA, the primary human antibody secreted from the gut mucosa, shapes the intestinal microbiota. Methodological limitations have hindered defining which microbial strains are targeted by IgA and the implications of binding. Here we develop a technique, metagenomic immunoglobulin sequencing (MIg-seq), that provides strain-level resolution of microbes coated by IgA and use it to determine IgA coating levels for 3,520 gut microbiome strains in healthy human faeces. We find that both health and disease-associated bacteria are targeted by IgA. Microbial genes are highly predictive of IgA binding levels; in particular, mucus degradation genes are correlated with high binding, and replication rates are significantly reduced for microbes bound by IgA. We demonstrate that IgA binding is more correlated with host immune status than traditional relative abundance measures of microbial community composition. This study introduces a powerful technique for assessing strain-level IgA binding in human stool, paving the way for deeper understanding of IgA-based host–microbe interactions. Metagenomic immunoglobulin sequencing (MIg-seq) uncovered patterns of IgA antibody binding of bacterial strains in the healthy human gut microbiome.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"10 1","pages":"112-125"},"PeriodicalIF":20.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metagenomic immunoglobulin sequencing reveals IgA coating of microbial strains in the healthy human gut\",\"authors\":\"Matthew R. Olm, Sean P. Spencer, Tadashi Takeuchi, Evelyn Lemus Silva, Justin L. Sonnenburg\",\"doi\":\"10.1038/s41564-024-01887-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IgA, the primary human antibody secreted from the gut mucosa, shapes the intestinal microbiota. Methodological limitations have hindered defining which microbial strains are targeted by IgA and the implications of binding. Here we develop a technique, metagenomic immunoglobulin sequencing (MIg-seq), that provides strain-level resolution of microbes coated by IgA and use it to determine IgA coating levels for 3,520 gut microbiome strains in healthy human faeces. We find that both health and disease-associated bacteria are targeted by IgA. Microbial genes are highly predictive of IgA binding levels; in particular, mucus degradation genes are correlated with high binding, and replication rates are significantly reduced for microbes bound by IgA. We demonstrate that IgA binding is more correlated with host immune status than traditional relative abundance measures of microbial community composition. This study introduces a powerful technique for assessing strain-level IgA binding in human stool, paving the way for deeper understanding of IgA-based host–microbe interactions. Metagenomic immunoglobulin sequencing (MIg-seq) uncovered patterns of IgA antibody binding of bacterial strains in the healthy human gut microbiome.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"10 1\",\"pages\":\"112-125\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01887-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01887-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

IgA是由肠道黏膜分泌的一种人类抗体,它塑造了肠道微生物群。方法上的限制阻碍了确定哪些微生物菌株是IgA的目标和结合的意义。在这里,我们开发了一种技术,宏基因组免疫球蛋白测序(MIg-seq),提供菌株水平的IgA包被微生物的分辨率,并使用它来确定健康人类粪便中3520种肠道微生物菌株的IgA包被水平。我们发现健康和疾病相关的细菌都是IgA的目标。微生物基因高度预测IgA结合水平;特别是黏液降解基因与高结合相关,被IgA结合的微生物复制率显著降低。我们证明,与微生物群落组成的传统相对丰度指标相比,IgA结合与宿主免疫状态的相关性更大。本研究引入了一种强大的技术来评估人类粪便中菌株水平的IgA结合,为深入了解基于IgA的宿主-微生物相互作用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metagenomic immunoglobulin sequencing reveals IgA coating of microbial strains in the healthy human gut

Metagenomic immunoglobulin sequencing reveals IgA coating of microbial strains in the healthy human gut

Metagenomic immunoglobulin sequencing reveals IgA coating of microbial strains in the healthy human gut
IgA, the primary human antibody secreted from the gut mucosa, shapes the intestinal microbiota. Methodological limitations have hindered defining which microbial strains are targeted by IgA and the implications of binding. Here we develop a technique, metagenomic immunoglobulin sequencing (MIg-seq), that provides strain-level resolution of microbes coated by IgA and use it to determine IgA coating levels for 3,520 gut microbiome strains in healthy human faeces. We find that both health and disease-associated bacteria are targeted by IgA. Microbial genes are highly predictive of IgA binding levels; in particular, mucus degradation genes are correlated with high binding, and replication rates are significantly reduced for microbes bound by IgA. We demonstrate that IgA binding is more correlated with host immune status than traditional relative abundance measures of microbial community composition. This study introduces a powerful technique for assessing strain-level IgA binding in human stool, paving the way for deeper understanding of IgA-based host–microbe interactions. Metagenomic immunoglobulin sequencing (MIg-seq) uncovered patterns of IgA antibody binding of bacterial strains in the healthy human gut microbiome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信