Volga Ozturk, Anil Murat Ozturk, Mehmet Asim Ozer, Figen Govsa
{"title":"应用三维弯曲腰椎模型模拟手术训练住院医师椎弓根螺钉置入。","authors":"Volga Ozturk, Anil Murat Ozturk, Mehmet Asim Ozer, Figen Govsa","doi":"10.1007/s00276-024-03550-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The challenges of spinal surgery can be overcome by deeply understanding the anatomical and surgical complexities of the region through the use of model simulators. This study investigates the impact of digitally designed simulators, specifically lumbar spinal models with abnormal curvature, on preoperative planning and their effectiveness as training tools. The study addresses challenges in spine surgery, such as unique deformities, classification issues, and associated abdominal structure abnormalities.</p><p><strong>Methods: </strong>Twenty life-sized lumbar spine models exhibiting lateral curvature, intervertebral rotation, asymmetry in spinal segments, and disc abnormalities were 3D printed for 20 trainees to practice pedicle screw placement across five levels. A detailed survey evaluated the residents' views on the anatomical realism of the model and its surgical application, focusing on screw sizes, procedure duration, placement accuracy, materials, and surgical techniques. The study emphasized understanding the anatomical bone structure, identifying lumbar spinal curvature, decision-making, pedicle placement, the development of surgical strategies, and the educational value of the simulator. It rated their understanding on a scale from 1 to 5, where 1 indicates very low understanding and 5 signifies extremely high understanding.</p><p><strong>Results: </strong>Post-practice surveys revealed that the primary challenge for residents was determining the correct direction for pedicle screw placement, with the model's loss of resistance being perceived as less realistic. Despite this, the simulated environment was found to be beneficial, with realistic procedural steps. Significant differences emerged in residents' perceptions regarding the identification of scoliosis levels (3.5), imitation of bone tissue (4.30), anatomical positioning of the pedicle start (3.55), and preparation for posterior deformity correction (4.7). The model proved to be an effective teaching tool, particularly in enhancing manual skills for pedicle screw placement (4.9), preparation for deformity correction (4.7), explaining surgery to patients and their families (4.8), and potentially reducing surgery time (4.6).</p><p><strong>Conclusion: </strong>The scoliotic model received high ratings for its appropriateness in screw placement, earning a 'very good' evaluation (4.2). Notably, its contribution to learning pedicle screw placement was rated very positively (4.7), highlighting its effectiveness as a valuable training tool. Scoliotic models play a crucial role in helping orthopedists understand patient-specific deformities and enhance preoperative preparation, ultimately contributing to improved surgical outcomes.</p>","PeriodicalId":49461,"journal":{"name":"Surgical and Radiologic Anatomy","volume":"47 1","pages":"49"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying a three-dimensional curved lumbar spine model to simulate surgery for training residents in pedicle screw insertion.\",\"authors\":\"Volga Ozturk, Anil Murat Ozturk, Mehmet Asim Ozer, Figen Govsa\",\"doi\":\"10.1007/s00276-024-03550-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The challenges of spinal surgery can be overcome by deeply understanding the anatomical and surgical complexities of the region through the use of model simulators. This study investigates the impact of digitally designed simulators, specifically lumbar spinal models with abnormal curvature, on preoperative planning and their effectiveness as training tools. The study addresses challenges in spine surgery, such as unique deformities, classification issues, and associated abdominal structure abnormalities.</p><p><strong>Methods: </strong>Twenty life-sized lumbar spine models exhibiting lateral curvature, intervertebral rotation, asymmetry in spinal segments, and disc abnormalities were 3D printed for 20 trainees to practice pedicle screw placement across five levels. A detailed survey evaluated the residents' views on the anatomical realism of the model and its surgical application, focusing on screw sizes, procedure duration, placement accuracy, materials, and surgical techniques. The study emphasized understanding the anatomical bone structure, identifying lumbar spinal curvature, decision-making, pedicle placement, the development of surgical strategies, and the educational value of the simulator. It rated their understanding on a scale from 1 to 5, where 1 indicates very low understanding and 5 signifies extremely high understanding.</p><p><strong>Results: </strong>Post-practice surveys revealed that the primary challenge for residents was determining the correct direction for pedicle screw placement, with the model's loss of resistance being perceived as less realistic. Despite this, the simulated environment was found to be beneficial, with realistic procedural steps. Significant differences emerged in residents' perceptions regarding the identification of scoliosis levels (3.5), imitation of bone tissue (4.30), anatomical positioning of the pedicle start (3.55), and preparation for posterior deformity correction (4.7). The model proved to be an effective teaching tool, particularly in enhancing manual skills for pedicle screw placement (4.9), preparation for deformity correction (4.7), explaining surgery to patients and their families (4.8), and potentially reducing surgery time (4.6).</p><p><strong>Conclusion: </strong>The scoliotic model received high ratings for its appropriateness in screw placement, earning a 'very good' evaluation (4.2). Notably, its contribution to learning pedicle screw placement was rated very positively (4.7), highlighting its effectiveness as a valuable training tool. Scoliotic models play a crucial role in helping orthopedists understand patient-specific deformities and enhance preoperative preparation, ultimately contributing to improved surgical outcomes.</p>\",\"PeriodicalId\":49461,\"journal\":{\"name\":\"Surgical and Radiologic Anatomy\",\"volume\":\"47 1\",\"pages\":\"49\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surgical and Radiologic Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00276-024-03550-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical and Radiologic Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00276-024-03550-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Applying a three-dimensional curved lumbar spine model to simulate surgery for training residents in pedicle screw insertion.
Purpose: The challenges of spinal surgery can be overcome by deeply understanding the anatomical and surgical complexities of the region through the use of model simulators. This study investigates the impact of digitally designed simulators, specifically lumbar spinal models with abnormal curvature, on preoperative planning and their effectiveness as training tools. The study addresses challenges in spine surgery, such as unique deformities, classification issues, and associated abdominal structure abnormalities.
Methods: Twenty life-sized lumbar spine models exhibiting lateral curvature, intervertebral rotation, asymmetry in spinal segments, and disc abnormalities were 3D printed for 20 trainees to practice pedicle screw placement across five levels. A detailed survey evaluated the residents' views on the anatomical realism of the model and its surgical application, focusing on screw sizes, procedure duration, placement accuracy, materials, and surgical techniques. The study emphasized understanding the anatomical bone structure, identifying lumbar spinal curvature, decision-making, pedicle placement, the development of surgical strategies, and the educational value of the simulator. It rated their understanding on a scale from 1 to 5, where 1 indicates very low understanding and 5 signifies extremely high understanding.
Results: Post-practice surveys revealed that the primary challenge for residents was determining the correct direction for pedicle screw placement, with the model's loss of resistance being perceived as less realistic. Despite this, the simulated environment was found to be beneficial, with realistic procedural steps. Significant differences emerged in residents' perceptions regarding the identification of scoliosis levels (3.5), imitation of bone tissue (4.30), anatomical positioning of the pedicle start (3.55), and preparation for posterior deformity correction (4.7). The model proved to be an effective teaching tool, particularly in enhancing manual skills for pedicle screw placement (4.9), preparation for deformity correction (4.7), explaining surgery to patients and their families (4.8), and potentially reducing surgery time (4.6).
Conclusion: The scoliotic model received high ratings for its appropriateness in screw placement, earning a 'very good' evaluation (4.2). Notably, its contribution to learning pedicle screw placement was rated very positively (4.7), highlighting its effectiveness as a valuable training tool. Scoliotic models play a crucial role in helping orthopedists understand patient-specific deformities and enhance preoperative preparation, ultimately contributing to improved surgical outcomes.
期刊介绍:
Anatomy is a morphological science which cannot fail to interest the clinician. The practical application of anatomical research to clinical problems necessitates special adaptation and selectivity in choosing from numerous international works. Although there is a tendency to believe that meaningful advances in anatomy are unlikely, constant revision is necessary. Surgical and Radiologic Anatomy, the first international journal of Clinical anatomy has been created in this spirit.
Its goal is to serve clinicians, regardless of speciality-physicians, surgeons, radiologists or other specialists-as an indispensable aid with which they can improve their knowledge of anatomy. Each issue includes: Original papers, review articles, articles on the anatomical bases of medical, surgical and radiological techniques, articles of normal radiologic anatomy, brief reviews of anatomical publications of clinical interest.
Particular attention is given to high quality illustrations, which are indispensable for a better understanding of anatomical problems.
Surgical and Radiologic Anatomy is a journal written by anatomists for clinicians with a special interest in anatomy.