Ahmed E Alprol, Ahmed Eleryan, Ahmed Abouelwafa, Ahmed M Gad, Tarek M Hamad
{"title":"绿色合成氧化锌纳米粒子利用帕迪娜金花提取物的高效光催化去除亚甲基蓝。","authors":"Ahmed E Alprol, Ahmed Eleryan, Ahmed Abouelwafa, Ahmed M Gad, Tarek M Hamad","doi":"10.1038/s41598-024-80757-9","DOIUrl":null,"url":null,"abstract":"<p><p>Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal. The synthesized ZnO NPs, characterized by Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Zeta Potential, demonstrated high adsorption capacity (Qm = 192.308 mg g<sup>-1</sup>) and excellent removal efficiency (> 98%) for MB at low dye concentrations. Langmuir isotherm and pseudo-second-order kinetic models best fit the experimental data, suggesting monolayer adsorption and chemisorption as the primary mechanisms. Notably, the green ZnO NPs exhibited greater photocatalytic activity under direct sunlight irradiation compared to other light sources. Additionally, these nanoparticles displayed antimicrobial properties against various bacteria, indicating potential for water disinfection. This research offers a sustainable and environmentally friendly approach for wastewater treatment utilizing green ZnO NPs for efficient dye removal and potential water disinfection applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"32160"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of zinc oxide nanoparticles using Padina pavonica extract for efficient photocatalytic removal of methylene blue.\",\"authors\":\"Ahmed E Alprol, Ahmed Eleryan, Ahmed Abouelwafa, Ahmed M Gad, Tarek M Hamad\",\"doi\":\"10.1038/s41598-024-80757-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal. The synthesized ZnO NPs, characterized by Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Zeta Potential, demonstrated high adsorption capacity (Qm = 192.308 mg g<sup>-1</sup>) and excellent removal efficiency (> 98%) for MB at low dye concentrations. Langmuir isotherm and pseudo-second-order kinetic models best fit the experimental data, suggesting monolayer adsorption and chemisorption as the primary mechanisms. Notably, the green ZnO NPs exhibited greater photocatalytic activity under direct sunlight irradiation compared to other light sources. Additionally, these nanoparticles displayed antimicrobial properties against various bacteria, indicating potential for water disinfection. This research offers a sustainable and environmentally friendly approach for wastewater treatment utilizing green ZnO NPs for efficient dye removal and potential water disinfection applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"32160\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-80757-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80757-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Green synthesis of zinc oxide nanoparticles using Padina pavonica extract for efficient photocatalytic removal of methylene blue.
Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal. The synthesized ZnO NPs, characterized by Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Zeta Potential, demonstrated high adsorption capacity (Qm = 192.308 mg g-1) and excellent removal efficiency (> 98%) for MB at low dye concentrations. Langmuir isotherm and pseudo-second-order kinetic models best fit the experimental data, suggesting monolayer adsorption and chemisorption as the primary mechanisms. Notably, the green ZnO NPs exhibited greater photocatalytic activity under direct sunlight irradiation compared to other light sources. Additionally, these nanoparticles displayed antimicrobial properties against various bacteria, indicating potential for water disinfection. This research offers a sustainable and environmentally friendly approach for wastewater treatment utilizing green ZnO NPs for efficient dye removal and potential water disinfection applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.