{"title":"生长素通过增加叶绿体分裂基因的表达来促进叶绿体分裂。","authors":"Yixuan Wang, Zhongyang Zhou, Xiaomin Liu","doi":"10.1007/s00299-024-03415-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth. However, the impact of auxin on chloroplast division remains unclear. In this study, different concentrations of exogenous IAA were applied to wild Arabidopsis thaliana. The results showed that the number and size differences of chloroplasts in the cells of Arabidopsis thaliana treated with high concentrations of IAA increased compared to untreated plants. Further investigation revealed that high concentrations of IAA affected the expression of chloroplast division genes and the formation of division rings. In chloroplast division mutants, the effect of IAA on promoting chloroplast division is impaired. Defects of IAA synthetic gene also lead to a reduced effect of IAA on chloroplast division. Our findings demonstrate that auxin influences chloroplast division by regulating the expressions of chloroplast division genes and affecting the localization of division rings. These results are significant for further exploring the relationship between auxin and chloroplast division.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"20"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auxin promotes chloroplast division by increasing the expression of chloroplast division genes.\",\"authors\":\"Yixuan Wang, Zhongyang Zhou, Xiaomin Liu\",\"doi\":\"10.1007/s00299-024-03415-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth. However, the impact of auxin on chloroplast division remains unclear. In this study, different concentrations of exogenous IAA were applied to wild Arabidopsis thaliana. The results showed that the number and size differences of chloroplasts in the cells of Arabidopsis thaliana treated with high concentrations of IAA increased compared to untreated plants. Further investigation revealed that high concentrations of IAA affected the expression of chloroplast division genes and the formation of division rings. In chloroplast division mutants, the effect of IAA on promoting chloroplast division is impaired. Defects of IAA synthetic gene also lead to a reduced effect of IAA on chloroplast division. Our findings demonstrate that auxin influences chloroplast division by regulating the expressions of chloroplast division genes and affecting the localization of division rings. These results are significant for further exploring the relationship between auxin and chloroplast division.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 1\",\"pages\":\"20\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-024-03415-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03415-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Auxin promotes chloroplast division by increasing the expression of chloroplast division genes.
Key message: Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth. However, the impact of auxin on chloroplast division remains unclear. In this study, different concentrations of exogenous IAA were applied to wild Arabidopsis thaliana. The results showed that the number and size differences of chloroplasts in the cells of Arabidopsis thaliana treated with high concentrations of IAA increased compared to untreated plants. Further investigation revealed that high concentrations of IAA affected the expression of chloroplast division genes and the formation of division rings. In chloroplast division mutants, the effect of IAA on promoting chloroplast division is impaired. Defects of IAA synthetic gene also lead to a reduced effect of IAA on chloroplast division. Our findings demonstrate that auxin influences chloroplast division by regulating the expressions of chloroplast division genes and affecting the localization of division rings. These results are significant for further exploring the relationship between auxin and chloroplast division.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.