{"title":"基于进化比例模型的O-GlcNAc蛋白修饰位点特异性预测","authors":"Ayesha Khalid, Afshan Kaleem, Wajahat Qazi, Roheena Abdullah, Mehwish Iqtedar, Shagufta Naz","doi":"10.1371/journal.pone.0316215","DOIUrl":null,"url":null,"abstract":"<p><p>Protein glycosylation, a vital post-translational modification, is pivotal in various biological processes and disease pathogenesis. Computational approaches, including protein language models and machine learning algorithms, have emerged as valuable tools for predicting O-GlcNAc sites, reducing experimental costs, and enhancing efficiency. However, the literature has not reported the prediction of O-GlcNAc sites through the evolutionary scale model (ESM). Therefore, this study employed the ESM-2 model for O-GlcNAc site prediction in humans. Approximately 1100 O-linked glycoprotein sequences retrieved from the O-GlcNAc database were utilized for model training. The ESM-2 model exhibited consistent improvement over epochs, achieving an accuracy of 78.30%, recall of 78.30%, precision of 61.31%, and F1-score of 68.74%. However, compared to the traditional models which show an overfitting on the same data up to 99%, ESM-2 model outperforms in terms of optimal training and testing predictions. These findings underscore the effectiveness of the ESM-2 model in accurately predicting O-GlcNAc sites within human proteins. Accurately predicting O-GlcNAc sites within human proteins can significantly advance glycoproteomic research by enhancing our understanding of protein function and disease mechanisms, aiding in developing targeted therapies, and facilitating biomarker discovery for improved diagnosis and treatment. Furthermore, future studies should focus on more diverse data types, longer protein sequence lengths, and higher computational resources to evaluate various parameters. Accurate prediction of O-GlcNAc sites might enhance the investigation of the site-specific functions of proteins in physiology and diseases.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0316215"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687694/pdf/","citationCount":"0","resultStr":"{\"title\":\"Site-specific prediction of O-GlcNAc modification in proteins using evolutionary scale model.\",\"authors\":\"Ayesha Khalid, Afshan Kaleem, Wajahat Qazi, Roheena Abdullah, Mehwish Iqtedar, Shagufta Naz\",\"doi\":\"10.1371/journal.pone.0316215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein glycosylation, a vital post-translational modification, is pivotal in various biological processes and disease pathogenesis. Computational approaches, including protein language models and machine learning algorithms, have emerged as valuable tools for predicting O-GlcNAc sites, reducing experimental costs, and enhancing efficiency. However, the literature has not reported the prediction of O-GlcNAc sites through the evolutionary scale model (ESM). Therefore, this study employed the ESM-2 model for O-GlcNAc site prediction in humans. Approximately 1100 O-linked glycoprotein sequences retrieved from the O-GlcNAc database were utilized for model training. The ESM-2 model exhibited consistent improvement over epochs, achieving an accuracy of 78.30%, recall of 78.30%, precision of 61.31%, and F1-score of 68.74%. However, compared to the traditional models which show an overfitting on the same data up to 99%, ESM-2 model outperforms in terms of optimal training and testing predictions. These findings underscore the effectiveness of the ESM-2 model in accurately predicting O-GlcNAc sites within human proteins. Accurately predicting O-GlcNAc sites within human proteins can significantly advance glycoproteomic research by enhancing our understanding of protein function and disease mechanisms, aiding in developing targeted therapies, and facilitating biomarker discovery for improved diagnosis and treatment. Furthermore, future studies should focus on more diverse data types, longer protein sequence lengths, and higher computational resources to evaluate various parameters. Accurate prediction of O-GlcNAc sites might enhance the investigation of the site-specific functions of proteins in physiology and diseases.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"19 12\",\"pages\":\"e0316215\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687694/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0316215\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0316215","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Site-specific prediction of O-GlcNAc modification in proteins using evolutionary scale model.
Protein glycosylation, a vital post-translational modification, is pivotal in various biological processes and disease pathogenesis. Computational approaches, including protein language models and machine learning algorithms, have emerged as valuable tools for predicting O-GlcNAc sites, reducing experimental costs, and enhancing efficiency. However, the literature has not reported the prediction of O-GlcNAc sites through the evolutionary scale model (ESM). Therefore, this study employed the ESM-2 model for O-GlcNAc site prediction in humans. Approximately 1100 O-linked glycoprotein sequences retrieved from the O-GlcNAc database were utilized for model training. The ESM-2 model exhibited consistent improvement over epochs, achieving an accuracy of 78.30%, recall of 78.30%, precision of 61.31%, and F1-score of 68.74%. However, compared to the traditional models which show an overfitting on the same data up to 99%, ESM-2 model outperforms in terms of optimal training and testing predictions. These findings underscore the effectiveness of the ESM-2 model in accurately predicting O-GlcNAc sites within human proteins. Accurately predicting O-GlcNAc sites within human proteins can significantly advance glycoproteomic research by enhancing our understanding of protein function and disease mechanisms, aiding in developing targeted therapies, and facilitating biomarker discovery for improved diagnosis and treatment. Furthermore, future studies should focus on more diverse data types, longer protein sequence lengths, and higher computational resources to evaluate various parameters. Accurate prediction of O-GlcNAc sites might enhance the investigation of the site-specific functions of proteins in physiology and diseases.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage