{"title":"DS2 设计者预融合 F 疫苗可诱导针对 RSV 感染的强保护性抗体反应。","authors":"Yiling Yang, Ruoke Wang, Fenglin Guo, Tian Zhao, Yuqing Lei, Qianqian Yang, Yige Zeng, Ziqing Yang, Tatchapon Ajavavarakula, Ruijie Tan, Mingxi Li, Haodi Dong, Mengyue Niu, Keyan Bao, Hao Geng, Qining Lv, Qi Zhang, Xuanling Shi, Peng Liu, Jiwan Ge, Xinquan Wang, Linqi Zhang","doi":"10.1038/s41541-024-01059-9","DOIUrl":null,"url":null,"abstract":"<p><p>DS-Cav1, SC-TM, and DS2 are distinct designer pre-fusion F proteins (pre-F) of respiratory syncytial virus (RSV) developed for vaccines. However, their immunogenicity has not been directly compared. In this study, we generated three recombinant vaccines using the chimpanzee adenovirus vector AdC68 to express DS-Cav1, SC-TM, and DS2. All three vaccines elicited robust serum binding and neutralizing antibodies following intramuscular priming and boosting. DS2 induced the strongest antibody responses, followed by SC-TM and DS-Cav1. DS2 also provided strong protection against live RSV challenge. Monoclonal antibodies (mAbs) isolated from long-lived antibody-secreting cells (ASCs) in the bone marrow six months post-immunization with AdC68-DS2 predominantly targeted site Ø as well as site II. One neutralizing antibody against site II, mAb60, conferred strong protection against live RSV infection in mice. These findings highlight the strong ability of the DS2 design in eliciting long-lived antibody responses and guide the development of next-generation RSV vaccines.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"258"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688450/pdf/","citationCount":"0","resultStr":"{\"title\":\"DS2 designer pre-fusion F vaccine induces strong and protective antibody response against RSV infection.\",\"authors\":\"Yiling Yang, Ruoke Wang, Fenglin Guo, Tian Zhao, Yuqing Lei, Qianqian Yang, Yige Zeng, Ziqing Yang, Tatchapon Ajavavarakula, Ruijie Tan, Mingxi Li, Haodi Dong, Mengyue Niu, Keyan Bao, Hao Geng, Qining Lv, Qi Zhang, Xuanling Shi, Peng Liu, Jiwan Ge, Xinquan Wang, Linqi Zhang\",\"doi\":\"10.1038/s41541-024-01059-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DS-Cav1, SC-TM, and DS2 are distinct designer pre-fusion F proteins (pre-F) of respiratory syncytial virus (RSV) developed for vaccines. However, their immunogenicity has not been directly compared. In this study, we generated three recombinant vaccines using the chimpanzee adenovirus vector AdC68 to express DS-Cav1, SC-TM, and DS2. All three vaccines elicited robust serum binding and neutralizing antibodies following intramuscular priming and boosting. DS2 induced the strongest antibody responses, followed by SC-TM and DS-Cav1. DS2 also provided strong protection against live RSV challenge. Monoclonal antibodies (mAbs) isolated from long-lived antibody-secreting cells (ASCs) in the bone marrow six months post-immunization with AdC68-DS2 predominantly targeted site Ø as well as site II. One neutralizing antibody against site II, mAb60, conferred strong protection against live RSV infection in mice. These findings highlight the strong ability of the DS2 design in eliciting long-lived antibody responses and guide the development of next-generation RSV vaccines.</p>\",\"PeriodicalId\":19335,\"journal\":{\"name\":\"NPJ Vaccines\",\"volume\":\"9 1\",\"pages\":\"258\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688450/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41541-024-01059-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-024-01059-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
DS2 designer pre-fusion F vaccine induces strong and protective antibody response against RSV infection.
DS-Cav1, SC-TM, and DS2 are distinct designer pre-fusion F proteins (pre-F) of respiratory syncytial virus (RSV) developed for vaccines. However, their immunogenicity has not been directly compared. In this study, we generated three recombinant vaccines using the chimpanzee adenovirus vector AdC68 to express DS-Cav1, SC-TM, and DS2. All three vaccines elicited robust serum binding and neutralizing antibodies following intramuscular priming and boosting. DS2 induced the strongest antibody responses, followed by SC-TM and DS-Cav1. DS2 also provided strong protection against live RSV challenge. Monoclonal antibodies (mAbs) isolated from long-lived antibody-secreting cells (ASCs) in the bone marrow six months post-immunization with AdC68-DS2 predominantly targeted site Ø as well as site II. One neutralizing antibody against site II, mAb60, conferred strong protection against live RSV infection in mice. These findings highlight the strong ability of the DS2 design in eliciting long-lived antibody responses and guide the development of next-generation RSV vaccines.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.