皮肤替代品:从传统到三维生物打印。

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
C Deepa, Anugya Bhatt
{"title":"皮肤替代品:从传统到三维生物打印。","authors":"C Deepa, Anugya Bhatt","doi":"10.1007/s10047-024-01481-9","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional bioprinting is getting enormous attention among the scientific community for its application in complex regenerative tissue engineering applications. One of the focus areas of 3-D bioprinting is Skin tissue engineering. Skin is the largest external organ and also the outer protective layer is prone to injuries due to accidents, burns, pathologic diseases like diabetes, and immobilization of patients due to other health conditions, etc. The demand for skin tissue and the need for an off-the-shelf skin construct to treat patients is increasing on an alarming basis. Conventional approaches like skin grafting increase morbidity. Other approaches include acellular grafts, where integration with the host tissue is a major concern. The emerging technology of the future is 3D bioprinting, where different biopolymers or hybrid polymers together provide the properties of extracellular matrix (ECM) and tissue microenvironment needed for cellular growth and proliferation. This raises the hope for the possibility of a shelf skin construct, which can be used on demand or even skin can be printed directly on the wound site (in-situ printing) based on the depth and complex structure of the wound site. In the present review article, we have tried to provide an overview of Skin tissue engineering, Conventional advancement in technology, 3D bioprinting and bioprinters for skin 3D printing, different biomaterials for skin 3D bioprinting applications, desirable properties of biomaterials and future challenges.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin substitutes: from conventional to 3D bioprinting.\",\"authors\":\"C Deepa, Anugya Bhatt\",\"doi\":\"10.1007/s10047-024-01481-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional bioprinting is getting enormous attention among the scientific community for its application in complex regenerative tissue engineering applications. One of the focus areas of 3-D bioprinting is Skin tissue engineering. Skin is the largest external organ and also the outer protective layer is prone to injuries due to accidents, burns, pathologic diseases like diabetes, and immobilization of patients due to other health conditions, etc. The demand for skin tissue and the need for an off-the-shelf skin construct to treat patients is increasing on an alarming basis. Conventional approaches like skin grafting increase morbidity. Other approaches include acellular grafts, where integration with the host tissue is a major concern. The emerging technology of the future is 3D bioprinting, where different biopolymers or hybrid polymers together provide the properties of extracellular matrix (ECM) and tissue microenvironment needed for cellular growth and proliferation. This raises the hope for the possibility of a shelf skin construct, which can be used on demand or even skin can be printed directly on the wound site (in-situ printing) based on the depth and complex structure of the wound site. In the present review article, we have tried to provide an overview of Skin tissue engineering, Conventional advancement in technology, 3D bioprinting and bioprinters for skin 3D printing, different biomaterials for skin 3D bioprinting applications, desirable properties of biomaterials and future challenges.</p>\",\"PeriodicalId\":15177,\"journal\":{\"name\":\"Journal of Artificial Organs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Organs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10047-024-01481-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-024-01481-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skin substitutes: from conventional to 3D bioprinting.

Three-dimensional bioprinting is getting enormous attention among the scientific community for its application in complex regenerative tissue engineering applications. One of the focus areas of 3-D bioprinting is Skin tissue engineering. Skin is the largest external organ and also the outer protective layer is prone to injuries due to accidents, burns, pathologic diseases like diabetes, and immobilization of patients due to other health conditions, etc. The demand for skin tissue and the need for an off-the-shelf skin construct to treat patients is increasing on an alarming basis. Conventional approaches like skin grafting increase morbidity. Other approaches include acellular grafts, where integration with the host tissue is a major concern. The emerging technology of the future is 3D bioprinting, where different biopolymers or hybrid polymers together provide the properties of extracellular matrix (ECM) and tissue microenvironment needed for cellular growth and proliferation. This raises the hope for the possibility of a shelf skin construct, which can be used on demand or even skin can be printed directly on the wound site (in-situ printing) based on the depth and complex structure of the wound site. In the present review article, we have tried to provide an overview of Skin tissue engineering, Conventional advancement in technology, 3D bioprinting and bioprinters for skin 3D printing, different biomaterials for skin 3D bioprinting applications, desirable properties of biomaterials and future challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Organs
Journal of Artificial Organs 医学-工程:生物医学
CiteScore
2.80
自引率
15.40%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The aim of the Journal of Artificial Organs is to introduce to colleagues worldwide a broad spectrum of important new achievements in the field of artificial organs, ranging from fundamental research to clinical applications. The scope of the Journal of Artificial Organs encompasses but is not restricted to blood purification, cardiovascular intervention, biomaterials, and artificial metabolic organs. Additionally, the journal will cover technical and industrial innovations. Membership in the Japanese Society for Artificial Organs is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信