Tae-Jung Ha, Woo-Ri Lim, Junyong Heo, Minhee Lee, Minjune Yang
{"title":"微塑料作为 Pb2+ 和 Cd2+ 的吸附剂:聚丙烯、聚氯乙烯、高密度聚乙烯和低密度聚乙烯的比较研究。","authors":"Tae-Jung Ha, Woo-Ri Lim, Junyong Heo, Minhee Lee, Minjune Yang","doi":"10.1016/j.jconhyd.2024.104491","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) in aquatic environments adsorb heavy metals, thereby posing potential environmental risks. However, further research is needed to elucidate the adsorption behavior of different types of MPs for various heavy metals. The aim of this study was to characterize four types of MPs: polypropylene (PP), polyvinyl chloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE). Moreover, their Pb<sup>2+</sup> and Cd<sup>2+</sup> adsorption properties were determined to investigate the differences in their capacity to function as heavy metal adsorbents. MPs were characterized via scanning electron microscopy (SEM) using energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR). Adsorption experiment data were analyzed using the Langmuir and Freundlich isotherm models to evaluate the adsorption capacity of the MPs. Based on the results of the adsorption isotherm models and 2D-COS FTIR, the presence of oxygen-containing functional groups, including hydroxyl, carbonyl, and carboxyl groups influences the adsorption process of Pb<sup>2+</sup> and Cd<sup>2+</sup> onto PP and PVC, with the maximum adsorption capacities (Q<sub>m</sub>) being 0.759 mg/g and 0.495 mg/g, respectively. Combination of the adsorption isotherm data and characteristics of MPs revealed that the following order of adsorption efficiencies of MPs for each heavy metal: PP > LDPE > PVC > HDPE for Pb<sup>2+</sup> and PP > PVC > LDPE > HDPE for Cd<sup>2+</sup>. The results of this study suggest that MPs, particularly PP and PVC, may serve as vectors for heavy metal transport in aquatic environments, highlighting the need for further research to assess their environmental impact.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104491"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics as adsorbent for Pb<sup>2+</sup> and Cd<sup>2+</sup>: A comparative study of polypropylene, polyvinyl chloride, high-density polyethylene, and low-density polyethylene.\",\"authors\":\"Tae-Jung Ha, Woo-Ri Lim, Junyong Heo, Minhee Lee, Minjune Yang\",\"doi\":\"10.1016/j.jconhyd.2024.104491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastics (MPs) in aquatic environments adsorb heavy metals, thereby posing potential environmental risks. However, further research is needed to elucidate the adsorption behavior of different types of MPs for various heavy metals. The aim of this study was to characterize four types of MPs: polypropylene (PP), polyvinyl chloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE). Moreover, their Pb<sup>2+</sup> and Cd<sup>2+</sup> adsorption properties were determined to investigate the differences in their capacity to function as heavy metal adsorbents. MPs were characterized via scanning electron microscopy (SEM) using energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR). Adsorption experiment data were analyzed using the Langmuir and Freundlich isotherm models to evaluate the adsorption capacity of the MPs. Based on the results of the adsorption isotherm models and 2D-COS FTIR, the presence of oxygen-containing functional groups, including hydroxyl, carbonyl, and carboxyl groups influences the adsorption process of Pb<sup>2+</sup> and Cd<sup>2+</sup> onto PP and PVC, with the maximum adsorption capacities (Q<sub>m</sub>) being 0.759 mg/g and 0.495 mg/g, respectively. Combination of the adsorption isotherm data and characteristics of MPs revealed that the following order of adsorption efficiencies of MPs for each heavy metal: PP > LDPE > PVC > HDPE for Pb<sup>2+</sup> and PP > PVC > LDPE > HDPE for Cd<sup>2+</sup>. The results of this study suggest that MPs, particularly PP and PVC, may serve as vectors for heavy metal transport in aquatic environments, highlighting the need for further research to assess their environmental impact.</p>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"269 \",\"pages\":\"104491\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jconhyd.2024.104491\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2024.104491","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microplastics as adsorbent for Pb2+ and Cd2+: A comparative study of polypropylene, polyvinyl chloride, high-density polyethylene, and low-density polyethylene.
Microplastics (MPs) in aquatic environments adsorb heavy metals, thereby posing potential environmental risks. However, further research is needed to elucidate the adsorption behavior of different types of MPs for various heavy metals. The aim of this study was to characterize four types of MPs: polypropylene (PP), polyvinyl chloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE). Moreover, their Pb2+ and Cd2+ adsorption properties were determined to investigate the differences in their capacity to function as heavy metal adsorbents. MPs were characterized via scanning electron microscopy (SEM) using energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR). Adsorption experiment data were analyzed using the Langmuir and Freundlich isotherm models to evaluate the adsorption capacity of the MPs. Based on the results of the adsorption isotherm models and 2D-COS FTIR, the presence of oxygen-containing functional groups, including hydroxyl, carbonyl, and carboxyl groups influences the adsorption process of Pb2+ and Cd2+ onto PP and PVC, with the maximum adsorption capacities (Qm) being 0.759 mg/g and 0.495 mg/g, respectively. Combination of the adsorption isotherm data and characteristics of MPs revealed that the following order of adsorption efficiencies of MPs for each heavy metal: PP > LDPE > PVC > HDPE for Pb2+ and PP > PVC > LDPE > HDPE for Cd2+. The results of this study suggest that MPs, particularly PP and PVC, may serve as vectors for heavy metal transport in aquatic environments, highlighting the need for further research to assess their environmental impact.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.