{"title":"上皮生长因子受体对犬软组织肉瘤中PI3K/AKT通路失调的潜在贡献。","authors":"Alfarisa Nururrozi, Masaya Igase, Kyohei Miyanishi, Masashi Sakurai, Yusuke Sakai, Mika Tanabe, Takuya Mizuno","doi":"10.21873/invivo.13808","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Soft tissue sarcoma (STS) is a mesenchymal tumor affecting multiple organs in dogs. Previous studies identified activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB, AKT) pathway in canine STS cell lines and clinical samples, but the underlying mechanism remains unclear. This study investigated PTEN loss, PIK3CA mutation, and EGFR over-expression as potential drivers of PI3K/AKT pathway activation in STS.</p><p><strong>Materials and methods: </strong>We analyzed 36 canine STS samples. PTEN and EGFR expression were evaluated using immunohistochemistry, while PIK3CA and EGFR mutations were assessed through DNA sequencing.</p><p><strong>Results: </strong>PTEN was expressed in all analyzed samples, with no evidence of loss. Weak PTEN expression was observed in 12 (33.3%) samples, while 24 (66.7%) showed normal expression. DNA sequencing of PIK3CA revealed a single point mutation (c.554 A>C, H554P) in one case, but no hotspot mutations were identified. High EGFR expression was significantly correlated with elevated phospho-AKT levels (p<0.0001). Immunolabelling indicated that 30 samples (83.3%) were EGFR-positive, and 27 of these also showed positive phospho-AKT labeling. Accordingly, one missense point mutation in exon 21 of EGFR (E868K) was identified in one of 12 samples.</p><p><strong>Conclusion: </strong>EGFR over-expression, rather than PTEN loss or PIK3CA mutations, may contribute to PI3K/AKT pathway dysregulation in canine STS. Further studies with larger sample sizes and additional validation techniques are necessary to confirm these findings.</p>","PeriodicalId":13364,"journal":{"name":"In vivo","volume":"39 1","pages":"110-119"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential Contribution of Epithelial Growth Factor Receptor to PI3K/AKT Pathway Dysregulation in Canine Soft Tissue Sarcoma.\",\"authors\":\"Alfarisa Nururrozi, Masaya Igase, Kyohei Miyanishi, Masashi Sakurai, Yusuke Sakai, Mika Tanabe, Takuya Mizuno\",\"doi\":\"10.21873/invivo.13808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Soft tissue sarcoma (STS) is a mesenchymal tumor affecting multiple organs in dogs. Previous studies identified activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB, AKT) pathway in canine STS cell lines and clinical samples, but the underlying mechanism remains unclear. This study investigated PTEN loss, PIK3CA mutation, and EGFR over-expression as potential drivers of PI3K/AKT pathway activation in STS.</p><p><strong>Materials and methods: </strong>We analyzed 36 canine STS samples. PTEN and EGFR expression were evaluated using immunohistochemistry, while PIK3CA and EGFR mutations were assessed through DNA sequencing.</p><p><strong>Results: </strong>PTEN was expressed in all analyzed samples, with no evidence of loss. Weak PTEN expression was observed in 12 (33.3%) samples, while 24 (66.7%) showed normal expression. DNA sequencing of PIK3CA revealed a single point mutation (c.554 A>C, H554P) in one case, but no hotspot mutations were identified. High EGFR expression was significantly correlated with elevated phospho-AKT levels (p<0.0001). Immunolabelling indicated that 30 samples (83.3%) were EGFR-positive, and 27 of these also showed positive phospho-AKT labeling. Accordingly, one missense point mutation in exon 21 of EGFR (E868K) was identified in one of 12 samples.</p><p><strong>Conclusion: </strong>EGFR over-expression, rather than PTEN loss or PIK3CA mutations, may contribute to PI3K/AKT pathway dysregulation in canine STS. Further studies with larger sample sizes and additional validation techniques are necessary to confirm these findings.</p>\",\"PeriodicalId\":13364,\"journal\":{\"name\":\"In vivo\",\"volume\":\"39 1\",\"pages\":\"110-119\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vivo\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/invivo.13808\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vivo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/invivo.13808","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Potential Contribution of Epithelial Growth Factor Receptor to PI3K/AKT Pathway Dysregulation in Canine Soft Tissue Sarcoma.
Background/aim: Soft tissue sarcoma (STS) is a mesenchymal tumor affecting multiple organs in dogs. Previous studies identified activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB, AKT) pathway in canine STS cell lines and clinical samples, but the underlying mechanism remains unclear. This study investigated PTEN loss, PIK3CA mutation, and EGFR over-expression as potential drivers of PI3K/AKT pathway activation in STS.
Materials and methods: We analyzed 36 canine STS samples. PTEN and EGFR expression were evaluated using immunohistochemistry, while PIK3CA and EGFR mutations were assessed through DNA sequencing.
Results: PTEN was expressed in all analyzed samples, with no evidence of loss. Weak PTEN expression was observed in 12 (33.3%) samples, while 24 (66.7%) showed normal expression. DNA sequencing of PIK3CA revealed a single point mutation (c.554 A>C, H554P) in one case, but no hotspot mutations were identified. High EGFR expression was significantly correlated with elevated phospho-AKT levels (p<0.0001). Immunolabelling indicated that 30 samples (83.3%) were EGFR-positive, and 27 of these also showed positive phospho-AKT labeling. Accordingly, one missense point mutation in exon 21 of EGFR (E868K) was identified in one of 12 samples.
Conclusion: EGFR over-expression, rather than PTEN loss or PIK3CA mutations, may contribute to PI3K/AKT pathway dysregulation in canine STS. Further studies with larger sample sizes and additional validation techniques are necessary to confirm these findings.
期刊介绍:
IN VIVO is an international peer-reviewed journal designed to bring together original high quality works and reviews on experimental and clinical biomedical research within the frames of physiology, pathology and disease management.
The topics of IN VIVO include: 1. Experimental development and application of new diagnostic and therapeutic procedures; 2. Pharmacological and toxicological evaluation of new drugs, drug combinations and drug delivery systems; 3. Clinical trials; 4. Development and characterization of models of biomedical research; 5. Cancer diagnosis and treatment; 6. Immunotherapy and vaccines; 7. Radiotherapy, Imaging; 8. Tissue engineering, Regenerative medicine; 9. Carcinogenesis.