改性离子交换树脂脱除草甘膦副产盐中磷的研究。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-06-01 Epub Date: 2024-12-31 DOI:10.1080/09593330.2024.2447627
Qisheng Wu, Sen Wang
{"title":"改性离子交换树脂脱除草甘膦副产盐中磷的研究。","authors":"Qisheng Wu, Sen Wang","doi":"10.1080/09593330.2024.2447627","DOIUrl":null,"url":null,"abstract":"<p><p>In order to achieve the goal of phosphate removal from glyphosate by-product salts, zirconium and zinc ions were successfully loaded onto D202 resin by co-precipitation modification method in this study, and their effectiveness in phosphate removal was evaluated under various conditions. The results of static adsorption experiments showed that the Zr/Zn@D202 resin effectively reduced the phosphate concentration in the glyphosate by-product salts from 10 mg/L to less than 0.1 mg/L, which met the national level emission standard (<i>P</i> < 0.5 mg/L). The adsorption capacity of Zr/Zn@D202 resin was 31.26 mg/g at pH 3, temperature 30 ℃, and adsorption time 2 h. The phosphate removal rate was 99.5%. The phosphate removal efficiency of Zr/Zn@D202 resin was maintained at 92% after five cycles. The samples were characterized by SEM, EDS, XRD, FT-IR and XPS. The characterization results confirmed the successful loading of zirconium and zinc ions, and elucidated that the adsorption mechanism of phosphate mainly involves the increase of the adsorption sites on the surface of the ion-exchange resin and the ion-exchange process. The pseudo-first-order model accurately described the adsorption kinetics, while the adsorption isotherms followed the Langmuir model.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"2812-2826"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of modified ion exchange resins for phosphorus removal from glyphosate by-product salt.\",\"authors\":\"Qisheng Wu, Sen Wang\",\"doi\":\"10.1080/09593330.2024.2447627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to achieve the goal of phosphate removal from glyphosate by-product salts, zirconium and zinc ions were successfully loaded onto D202 resin by co-precipitation modification method in this study, and their effectiveness in phosphate removal was evaluated under various conditions. The results of static adsorption experiments showed that the Zr/Zn@D202 resin effectively reduced the phosphate concentration in the glyphosate by-product salts from 10 mg/L to less than 0.1 mg/L, which met the national level emission standard (<i>P</i> < 0.5 mg/L). The adsorption capacity of Zr/Zn@D202 resin was 31.26 mg/g at pH 3, temperature 30 ℃, and adsorption time 2 h. The phosphate removal rate was 99.5%. The phosphate removal efficiency of Zr/Zn@D202 resin was maintained at 92% after five cycles. The samples were characterized by SEM, EDS, XRD, FT-IR and XPS. The characterization results confirmed the successful loading of zirconium and zinc ions, and elucidated that the adsorption mechanism of phosphate mainly involves the increase of the adsorption sites on the surface of the ion-exchange resin and the ion-exchange process. The pseudo-first-order model accurately described the adsorption kinetics, while the adsorption isotherms followed the Langmuir model.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"2812-2826\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2447627\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2447627","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了达到草甘膦副产物盐脱除磷酸盐的目的,本研究通过共沉淀法将锆离子和锌离子成功负载到D202树脂上,并在不同条件下对其脱除磷酸盐的效果进行了评价。静态吸附实验结果表明,Zr/Zn@D202树脂有效地将草甘膦副产物盐中的磷酸盐浓度从10 mg/L降至0.1 mg/L以下,达到了国家级排放标准(P < 0.5 mg/L)。Zr/Zn@D202树脂在pH为3、温度为30℃、吸附时间为2 h时的吸附量为31.26 mg/g,磷酸盐去除率为99.5%。Zr/Zn@D202树脂经过5次循环后,磷酸盐去除率保持在92%。采用SEM、EDS、XRD、FT-IR和XPS对样品进行了表征。表征结果证实了锆和锌离子的成功加载,并阐明了磷酸盐的吸附机理主要涉及离子交换树脂表面吸附位点的增加和离子交换过程。吸附等温线符合Langmuir模型,拟一阶模型较准确地描述了吸附动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of modified ion exchange resins for phosphorus removal from glyphosate by-product salt.

In order to achieve the goal of phosphate removal from glyphosate by-product salts, zirconium and zinc ions were successfully loaded onto D202 resin by co-precipitation modification method in this study, and their effectiveness in phosphate removal was evaluated under various conditions. The results of static adsorption experiments showed that the Zr/Zn@D202 resin effectively reduced the phosphate concentration in the glyphosate by-product salts from 10 mg/L to less than 0.1 mg/L, which met the national level emission standard (P < 0.5 mg/L). The adsorption capacity of Zr/Zn@D202 resin was 31.26 mg/g at pH 3, temperature 30 ℃, and adsorption time 2 h. The phosphate removal rate was 99.5%. The phosphate removal efficiency of Zr/Zn@D202 resin was maintained at 92% after five cycles. The samples were characterized by SEM, EDS, XRD, FT-IR and XPS. The characterization results confirmed the successful loading of zirconium and zinc ions, and elucidated that the adsorption mechanism of phosphate mainly involves the increase of the adsorption sites on the surface of the ion-exchange resin and the ion-exchange process. The pseudo-first-order model accurately described the adsorption kinetics, while the adsorption isotherms followed the Langmuir model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信