{"title":"靶向OAS3逆转胰腺癌M2d浸润,恢复抗肿瘤免疫。","authors":"Shaopeng Zhang, Ximo Xu, Kundong Zhang, Changzheng Lei, Yitian Xu, Pengshan Zhang, Yuan Zhang, Haitao Gu, Chen Huang, Zhengjun Qiu","doi":"10.1007/s00262-024-03898-w","DOIUrl":null,"url":null,"abstract":"<p><p>Abundant infiltration of tumor-associated macrophages (TAMs) within the tumor stroma plays a pivotal role in inducing immune escape in pancreatic cancer (PC). Lactate serves as a direct regulator of macrophage polarization and functions, although the precise regulation mechanism remains inadequately understood. Our study revealed that PC cells (PCs) promote macrophage polarization toward M2d through high lactate secretion. M2d is characterized by elevated secretion of IL-10 and VEGF-A, which diminish CD8<sup>+</sup>T cells cytotoxicity and promote tumor neoangiogenesis simultaneously. Additionally, we identify 2,5'-oligoadenylate synthase 3 (OAS3) as an essential regulator of M2d polarization, upregulated by PCs via lactate/METTL3/OAS3 axis. Increased OAS3 expression in TAMs correlates with m6A modification mediated by METTL3 on OAS3 mRNA and is associated with poorer prognosis in PC patients. OAS3 deficiency in macrophages substantially impairs IL-10<sup>high</sup>VEGF-A<sup>high</sup>M2d polarization and their pro-tumor functions while enhancing the therapeutic efficacy of gemcitabine and anti-PD-L1 mAb in humanized mouse models. In conclusion, OAS3 presents as a promising immune therapeutic target for reversing IL-10<sup>high</sup>VEGF-A<sup>high</sup>M2d infiltration and restoring CD8<sup>+</sup>T cell-mediated anti-tumor immunity in pancreatic cancer.</p>","PeriodicalId":9595,"journal":{"name":"Cancer Immunology, Immunotherapy","volume":"74 1","pages":"37"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685377/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting OAS3 for reversing M2d infiltration and restoring anti-tumor immunity in pancreatic cancer.\",\"authors\":\"Shaopeng Zhang, Ximo Xu, Kundong Zhang, Changzheng Lei, Yitian Xu, Pengshan Zhang, Yuan Zhang, Haitao Gu, Chen Huang, Zhengjun Qiu\",\"doi\":\"10.1007/s00262-024-03898-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abundant infiltration of tumor-associated macrophages (TAMs) within the tumor stroma plays a pivotal role in inducing immune escape in pancreatic cancer (PC). Lactate serves as a direct regulator of macrophage polarization and functions, although the precise regulation mechanism remains inadequately understood. Our study revealed that PC cells (PCs) promote macrophage polarization toward M2d through high lactate secretion. M2d is characterized by elevated secretion of IL-10 and VEGF-A, which diminish CD8<sup>+</sup>T cells cytotoxicity and promote tumor neoangiogenesis simultaneously. Additionally, we identify 2,5'-oligoadenylate synthase 3 (OAS3) as an essential regulator of M2d polarization, upregulated by PCs via lactate/METTL3/OAS3 axis. Increased OAS3 expression in TAMs correlates with m6A modification mediated by METTL3 on OAS3 mRNA and is associated with poorer prognosis in PC patients. OAS3 deficiency in macrophages substantially impairs IL-10<sup>high</sup>VEGF-A<sup>high</sup>M2d polarization and their pro-tumor functions while enhancing the therapeutic efficacy of gemcitabine and anti-PD-L1 mAb in humanized mouse models. In conclusion, OAS3 presents as a promising immune therapeutic target for reversing IL-10<sup>high</sup>VEGF-A<sup>high</sup>M2d infiltration and restoring CD8<sup>+</sup>T cell-mediated anti-tumor immunity in pancreatic cancer.</p>\",\"PeriodicalId\":9595,\"journal\":{\"name\":\"Cancer Immunology, Immunotherapy\",\"volume\":\"74 1\",\"pages\":\"37\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Immunology, Immunotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00262-024-03898-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Immunology, Immunotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00262-024-03898-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Targeting OAS3 for reversing M2d infiltration and restoring anti-tumor immunity in pancreatic cancer.
Abundant infiltration of tumor-associated macrophages (TAMs) within the tumor stroma plays a pivotal role in inducing immune escape in pancreatic cancer (PC). Lactate serves as a direct regulator of macrophage polarization and functions, although the precise regulation mechanism remains inadequately understood. Our study revealed that PC cells (PCs) promote macrophage polarization toward M2d through high lactate secretion. M2d is characterized by elevated secretion of IL-10 and VEGF-A, which diminish CD8+T cells cytotoxicity and promote tumor neoangiogenesis simultaneously. Additionally, we identify 2,5'-oligoadenylate synthase 3 (OAS3) as an essential regulator of M2d polarization, upregulated by PCs via lactate/METTL3/OAS3 axis. Increased OAS3 expression in TAMs correlates with m6A modification mediated by METTL3 on OAS3 mRNA and is associated with poorer prognosis in PC patients. OAS3 deficiency in macrophages substantially impairs IL-10highVEGF-AhighM2d polarization and their pro-tumor functions while enhancing the therapeutic efficacy of gemcitabine and anti-PD-L1 mAb in humanized mouse models. In conclusion, OAS3 presents as a promising immune therapeutic target for reversing IL-10highVEGF-AhighM2d infiltration and restoring CD8+T cell-mediated anti-tumor immunity in pancreatic cancer.
期刊介绍:
Cancer Immunology, Immunotherapy has the basic aim of keeping readers informed of the latest research results in the fields of oncology and immunology. As knowledge expands, the scope of the journal has broadened to include more of the progress being made in the areas of biology concerned with biological response modifiers. This helps keep readers up to date on the latest advances in our understanding of tumor-host interactions.
The journal publishes short editorials including "position papers," general reviews, original articles, and short communications, providing a forum for the most current experimental and clinical advances in tumor immunology.