使用体积MRI分类器分离路易体痴呆和阿尔茨海默病痴呆。

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
European Radiology Pub Date : 2025-07-01 Epub Date: 2024-12-30 DOI:10.1007/s00330-024-11257-7
Aniek M van Gils, Antti J Tolonen, Hanneke F M Rhodius-Meester, Patrizia Mecocci, Ritva Vanninen, Kristian Steen Frederiksen, Frederik Barkhof, Bas Jasperse, Jyrki Lötjönen, Wiesje M van der Flier, Afina W Lemstra
{"title":"使用体积MRI分类器分离路易体痴呆和阿尔茨海默病痴呆。","authors":"Aniek M van Gils, Antti J Tolonen, Hanneke F M Rhodius-Meester, Patrizia Mecocci, Ritva Vanninen, Kristian Steen Frederiksen, Frederik Barkhof, Bas Jasperse, Jyrki Lötjönen, Wiesje M van der Flier, Afina W Lemstra","doi":"10.1007/s00330-024-11257-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Distinguishing dementia with Lewy bodies (DLB) from Alzheimer's disease (AD) dementia, particularly in patients with DLB and concomitant AD pathology (DLB/AD+), can be challenging and there is no specific MRI signature for DLB. The aim of this study is to examine the additional value of MRI-based brain volumetry in separating patients with DLB (AD+/-) from patients with AD and controls.</p><p><strong>Methods: </strong>We included 1518 participants from four cohorts (ADC, ADNI, PDBP and PredictND); 147 were patients with DLB (n = 76, DLB/AD+; n = 71, DLB/AD-), 668 patients with AD dementia, and 703 controls. We used an automatic segmentation tool to compute volumes of 70 brain regions, for which age, sex, and head size-dependent z-scores were calculated. We compared individual regions between the diagnostic groups and evaluated whether combining multiple regions improves differentiation. To assess the diagnostic performance, we used the area under the receiver operating characteristic curve (AUC) and sensitivity.</p><p><strong>Results: </strong>The classifier using the combination of 70 volumetric brain regions correctly classified 60% of patients with DLB and 70% of patients with AD dementia. For DLB vs. AD, the classifier produced an AUC of 0.80 (0.77-0.83), which outperformed the best individual region, hippocampus (AUC: 0.73 [0.69-0.76], p < 0.01). For the comparison of DLB/AD+ vs. AD, the classifier increased the AUC to 0.74 (0.68-0.80), which was 0.70 (0.64-0.76) for the hippocampus, p = 0.25.</p><p><strong>Conclusion: </strong>Using a combination of volumetric brain regions improved the classification accuracy, and thus the discrimination, of patients with DLB with and without concomitant AD pathology and AD.</p><p><strong>Key points: </strong>Question No specific MRI signature for dementia with Lewy bodies (DLB) exists, making the differential diagnosis challenging, especially with dementia due to Alzheimer's disease (AD). Findings Volumes of individual brain regions defined by automatic MRI segmentation differed between DLB and AD patients and controls. Clinical relevance Automatic MRI segmentation can contribute to improving the discrimination of patients with DLB and AD, especially in non-specialized memory clinics.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"3753-3767"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating dementia with Lewy bodies from Alzheimer's disease dementia using a volumetric MRI classifier.\",\"authors\":\"Aniek M van Gils, Antti J Tolonen, Hanneke F M Rhodius-Meester, Patrizia Mecocci, Ritva Vanninen, Kristian Steen Frederiksen, Frederik Barkhof, Bas Jasperse, Jyrki Lötjönen, Wiesje M van der Flier, Afina W Lemstra\",\"doi\":\"10.1007/s00330-024-11257-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Distinguishing dementia with Lewy bodies (DLB) from Alzheimer's disease (AD) dementia, particularly in patients with DLB and concomitant AD pathology (DLB/AD+), can be challenging and there is no specific MRI signature for DLB. The aim of this study is to examine the additional value of MRI-based brain volumetry in separating patients with DLB (AD+/-) from patients with AD and controls.</p><p><strong>Methods: </strong>We included 1518 participants from four cohorts (ADC, ADNI, PDBP and PredictND); 147 were patients with DLB (n = 76, DLB/AD+; n = 71, DLB/AD-), 668 patients with AD dementia, and 703 controls. We used an automatic segmentation tool to compute volumes of 70 brain regions, for which age, sex, and head size-dependent z-scores were calculated. We compared individual regions between the diagnostic groups and evaluated whether combining multiple regions improves differentiation. To assess the diagnostic performance, we used the area under the receiver operating characteristic curve (AUC) and sensitivity.</p><p><strong>Results: </strong>The classifier using the combination of 70 volumetric brain regions correctly classified 60% of patients with DLB and 70% of patients with AD dementia. For DLB vs. AD, the classifier produced an AUC of 0.80 (0.77-0.83), which outperformed the best individual region, hippocampus (AUC: 0.73 [0.69-0.76], p < 0.01). For the comparison of DLB/AD+ vs. AD, the classifier increased the AUC to 0.74 (0.68-0.80), which was 0.70 (0.64-0.76) for the hippocampus, p = 0.25.</p><p><strong>Conclusion: </strong>Using a combination of volumetric brain regions improved the classification accuracy, and thus the discrimination, of patients with DLB with and without concomitant AD pathology and AD.</p><p><strong>Key points: </strong>Question No specific MRI signature for dementia with Lewy bodies (DLB) exists, making the differential diagnosis challenging, especially with dementia due to Alzheimer's disease (AD). Findings Volumes of individual brain regions defined by automatic MRI segmentation differed between DLB and AD patients and controls. Clinical relevance Automatic MRI segmentation can contribute to improving the discrimination of patients with DLB and AD, especially in non-specialized memory clinics.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":\" \",\"pages\":\"3753-3767\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-024-11257-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11257-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:区分路易体痴呆(DLB)与阿尔茨海默病(AD)痴呆,特别是在患有DLB和伴随AD病理(DLB/AD+)的患者中,可能具有挑战性,并且DLB没有特定的MRI特征。本研究的目的是研究基于mri的脑容量测定在区分DLB (AD+/-)患者与AD患者和对照组中的附加价值。方法:我们从4个队列(ADC、ADNI、PDBP和PredictND)中纳入1518名参与者;147例DLB患者(n = 76, DLB/AD+;n = 71, DLB/AD-), 668例AD痴呆患者和703例对照。我们使用自动分割工具来计算70个大脑区域的体积,并计算年龄、性别和头部大小相关的z分数。我们比较了诊断组之间的单个区域,并评估合并多个区域是否能改善分化。为了评估诊断性能,我们使用了受者工作特征曲线下面积(AUC)和灵敏度。结果:使用70个脑容量区组合的分类器正确分类了60%的DLB患者和70%的AD痴呆患者。对于DLB与AD,分类器产生的AUC为0.80(0.77-0.83),优于最佳的单个区域海马(AUC: 0.73[0.69-0.76])。结论:结合使用脑容量区域提高了DLB患者的分类准确性,从而提高了对合并AD病理和AD的DLB患者的区分。路易体痴呆(DLB)没有特异性的MRI特征,使得鉴别诊断具有挑战性,特别是阿尔茨海默病(AD)所致的痴呆。发现DLB和AD患者与对照组的自动MRI分割所定义的单个脑区体积存在差异。MRI自动分割有助于提高对DLB和AD患者的区分,特别是在非专业记忆诊所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating dementia with Lewy bodies from Alzheimer's disease dementia using a volumetric MRI classifier.

Objectives: Distinguishing dementia with Lewy bodies (DLB) from Alzheimer's disease (AD) dementia, particularly in patients with DLB and concomitant AD pathology (DLB/AD+), can be challenging and there is no specific MRI signature for DLB. The aim of this study is to examine the additional value of MRI-based brain volumetry in separating patients with DLB (AD+/-) from patients with AD and controls.

Methods: We included 1518 participants from four cohorts (ADC, ADNI, PDBP and PredictND); 147 were patients with DLB (n = 76, DLB/AD+; n = 71, DLB/AD-), 668 patients with AD dementia, and 703 controls. We used an automatic segmentation tool to compute volumes of 70 brain regions, for which age, sex, and head size-dependent z-scores were calculated. We compared individual regions between the diagnostic groups and evaluated whether combining multiple regions improves differentiation. To assess the diagnostic performance, we used the area under the receiver operating characteristic curve (AUC) and sensitivity.

Results: The classifier using the combination of 70 volumetric brain regions correctly classified 60% of patients with DLB and 70% of patients with AD dementia. For DLB vs. AD, the classifier produced an AUC of 0.80 (0.77-0.83), which outperformed the best individual region, hippocampus (AUC: 0.73 [0.69-0.76], p < 0.01). For the comparison of DLB/AD+ vs. AD, the classifier increased the AUC to 0.74 (0.68-0.80), which was 0.70 (0.64-0.76) for the hippocampus, p = 0.25.

Conclusion: Using a combination of volumetric brain regions improved the classification accuracy, and thus the discrimination, of patients with DLB with and without concomitant AD pathology and AD.

Key points: Question No specific MRI signature for dementia with Lewy bodies (DLB) exists, making the differential diagnosis challenging, especially with dementia due to Alzheimer's disease (AD). Findings Volumes of individual brain regions defined by automatic MRI segmentation differed between DLB and AD patients and controls. Clinical relevance Automatic MRI segmentation can contribute to improving the discrimination of patients with DLB and AD, especially in non-specialized memory clinics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信