ReV作为一种新型酿酒葡萄球菌衍生的药物载体,通过柔红霉素输送增强抗癌治疗。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yunyoung Cho, Jiwoo Lim, Yang-Hoon Kim, Jiho Min
{"title":"ReV作为一种新型酿酒葡萄球菌衍生的药物载体,通过柔红霉素输送增强抗癌治疗。","authors":"Yunyoung Cho, Jiwoo Lim, Yang-Hoon Kim, Jiho Min","doi":"10.1007/s12010-024-05177-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles. ReV encapsulating DNR were tested against HL-60 cells, a model for acute myeloid leukemia, to evaluate their therapeutic impact. Through various analyses, including Nanoparticle tracking analysis (NTA) and Field-emission electron scanning microscope (FE-SEM), we characterized the properties of ReV. Our findings revealed that ReV exhibited superior stability, drug release rate, and cytotoxic efficacy compared to normal vacuoles (NorV). Notably, ReV demonstrated a higher apoptosis rate in HL-60 cells, efficient and complete release of DNR within 24 h, and reduced cytotoxic side effects. These results suggest that ReV could represent a new and effective drug delivery system in anticancer therapy, paving the way for more targeted and safer cancer treatment modalities.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery.\",\"authors\":\"Yunyoung Cho, Jiwoo Lim, Yang-Hoon Kim, Jiho Min\",\"doi\":\"10.1007/s12010-024-05177-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles. ReV encapsulating DNR were tested against HL-60 cells, a model for acute myeloid leukemia, to evaluate their therapeutic impact. Through various analyses, including Nanoparticle tracking analysis (NTA) and Field-emission electron scanning microscope (FE-SEM), we characterized the properties of ReV. Our findings revealed that ReV exhibited superior stability, drug release rate, and cytotoxic efficacy compared to normal vacuoles (NorV). Notably, ReV demonstrated a higher apoptosis rate in HL-60 cells, efficient and complete release of DNR within 24 h, and reduced cytotoxic side effects. These results suggest that ReV could represent a new and effective drug delivery system in anticancer therapy, paving the way for more targeted and safer cancer treatment modalities.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05177-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05177-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了酿酒酵母(Saccharomyces cerevisiae)液泡作为一种新型药物载体的潜力,特别关注了它们在增强化疗药物柔红霉素(DNR)递送中的应用。我们分离并重组了这些液泡,称为重组液泡(reassemble vacuoles, ReV),旨在克服传统液泡中水解酶对药物降解的挑战。采用ReV包封DNR对急性髓系白血病模型HL-60细胞进行治疗,评价其治疗效果。通过纳米颗粒跟踪分析(NTA)和场发射电子扫描显微镜(FE-SEM)等多种分析,我们对ReV的性质进行了表征。我们的研究结果表明,与正常液泡(NorV)相比,ReV具有更好的稳定性、药物释放率和细胞毒性功效。值得注意的是,ReV在HL-60细胞中显示出更高的凋亡率,DNR在24 h内有效和完全释放,并且减少了细胞毒副作用。这些结果表明ReV可能代表一种新的有效的抗癌药物传递系统,为更有针对性和更安全的癌症治疗方式铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery.

This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles. ReV encapsulating DNR were tested against HL-60 cells, a model for acute myeloid leukemia, to evaluate their therapeutic impact. Through various analyses, including Nanoparticle tracking analysis (NTA) and Field-emission electron scanning microscope (FE-SEM), we characterized the properties of ReV. Our findings revealed that ReV exhibited superior stability, drug release rate, and cytotoxic efficacy compared to normal vacuoles (NorV). Notably, ReV demonstrated a higher apoptosis rate in HL-60 cells, efficient and complete release of DNR within 24 h, and reduced cytotoxic side effects. These results suggest that ReV could represent a new and effective drug delivery system in anticancer therapy, paving the way for more targeted and safer cancer treatment modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信