Fedor Nikulenkov, Benoit Carbain, Raktim Biswas, Stepan Havel, Jana Prochazkova, Alexandra Sisakova, Magdalena Zacpalova, Melita Chavdarova, Victoria Marini, Vit Vsiansky, Veronika Weisova, Kristina Slavikova, Dhanraj Biradar, Prashant Khirsariya, Marco Vitek, David Sedlak, Petr Bartunek, Lukas Daniel, Jan Brezovsky, Jiri Damborsky, Lumir Krejci
{"title":"核酸酶MRE11新抑制剂的发现","authors":"Fedor Nikulenkov, Benoit Carbain, Raktim Biswas, Stepan Havel, Jana Prochazkova, Alexandra Sisakova, Magdalena Zacpalova, Melita Chavdarova, Victoria Marini, Vit Vsiansky, Veronika Weisova, Kristina Slavikova, Dhanraj Biradar, Prashant Khirsariya, Marco Vitek, David Sedlak, Petr Bartunek, Lukas Daniel, Jan Brezovsky, Jiri Damborsky, Lumir Krejci","doi":"10.1016/j.ejmech.2024.117226","DOIUrl":null,"url":null,"abstract":"MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors <strong>MU147</strong> and <strong>MU1409</strong>. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds <strong>MU147</strong> and <strong>MU1409</strong> can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"29 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of new inhibitors of nuclease MRE11\",\"authors\":\"Fedor Nikulenkov, Benoit Carbain, Raktim Biswas, Stepan Havel, Jana Prochazkova, Alexandra Sisakova, Magdalena Zacpalova, Melita Chavdarova, Victoria Marini, Vit Vsiansky, Veronika Weisova, Kristina Slavikova, Dhanraj Biradar, Prashant Khirsariya, Marco Vitek, David Sedlak, Petr Bartunek, Lukas Daniel, Jan Brezovsky, Jiri Damborsky, Lumir Krejci\",\"doi\":\"10.1016/j.ejmech.2024.117226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors <strong>MU147</strong> and <strong>MU1409</strong>. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds <strong>MU147</strong> and <strong>MU1409</strong> can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmech.2024.117226\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117226","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds MU147 and MU1409 can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.