膜定向推拉偶氮苯对膜电位的光学调制

IF 20.6 Q1 OPTICS
Valentina Sesti, Arianna Magni, Matteo Moschetta, Chiara Florindi, Marlene E. Pfeffer, Mattia Lorenzo DiFrancesco, Michele Guizzardi, Giulia Folpini, Luca Sala, Alessandra Gilda Ritacca, Beatrice Campanelli, Paola Moretti, Giuseppe Maria Paternò, Luca Maragliano, Matteo Tommasini, Francesco Lodola, Elisabetta Colombo, Fabio Benfenati, Chiara Bertarelli, Guglielmo Lanzani
{"title":"膜定向推拉偶氮苯对膜电位的光学调制","authors":"Valentina Sesti, Arianna Magni, Matteo Moschetta, Chiara Florindi, Marlene E. Pfeffer, Mattia Lorenzo DiFrancesco, Michele Guizzardi, Giulia Folpini, Luca Sala, Alessandra Gilda Ritacca, Beatrice Campanelli, Paola Moretti, Giuseppe Maria Paternò, Luca Maragliano, Matteo Tommasini, Francesco Lodola, Elisabetta Colombo, Fabio Benfenati, Chiara Bertarelli, Guglielmo Lanzani","doi":"10.1038/s41377-024-01669-x","DOIUrl":null,"url":null,"abstract":"<p>We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from <i>trans</i> to <i>cis</i>, changing the local charge distribution and thus stimulating the cell response. Specifically, MTs photoisomerization induces clear and reproducible depolarization. The most promising species, MTP2, was extensively studied. Time-resolved spectroscopy techniques provide insights into the excited state evolution and a complete understanding of its isomerization reaction. Molecular Dynamics simulations reveal the spontaneous and stable partitioning of the compound into the cellular membrane, without significant alterations to the bilayer thickness. MTP2 was tested in different cell types, including HEK293T cells, primary neurons, and cardiomyocytes, and a steady depolarization is always recorded. The observed membrane potential modulation in in-vitro models is attributed to the variation in membrane surface charge, resulting from the light-driven modulation of the MT dipole moment within the cell membrane. Additionally, a developed mathematical model successfully captures the temporal evolution of the membrane potential upon photostimulation. Despite being insufficient for triggering action potentials, the rapid light-induced depolarization holds potential applications, particularly in cardiac electrophysiology. Low-intensity optical stimulation with these modulators could influence cardiac electrical activity, demonstrating potential efficacy in destabilizing and terminating cardiac arrhythmias. We anticipate the MTs approach to find applications in neuroscience, biomedicine, and biophotonics, providing a tool for modulating cell physiology without genetic interventions.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"71 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-targeted push-pull azobenzenes for the optical modulation of membrane potential\",\"authors\":\"Valentina Sesti, Arianna Magni, Matteo Moschetta, Chiara Florindi, Marlene E. Pfeffer, Mattia Lorenzo DiFrancesco, Michele Guizzardi, Giulia Folpini, Luca Sala, Alessandra Gilda Ritacca, Beatrice Campanelli, Paola Moretti, Giuseppe Maria Paternò, Luca Maragliano, Matteo Tommasini, Francesco Lodola, Elisabetta Colombo, Fabio Benfenati, Chiara Bertarelli, Guglielmo Lanzani\",\"doi\":\"10.1038/s41377-024-01669-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from <i>trans</i> to <i>cis</i>, changing the local charge distribution and thus stimulating the cell response. Specifically, MTs photoisomerization induces clear and reproducible depolarization. The most promising species, MTP2, was extensively studied. Time-resolved spectroscopy techniques provide insights into the excited state evolution and a complete understanding of its isomerization reaction. Molecular Dynamics simulations reveal the spontaneous and stable partitioning of the compound into the cellular membrane, without significant alterations to the bilayer thickness. MTP2 was tested in different cell types, including HEK293T cells, primary neurons, and cardiomyocytes, and a steady depolarization is always recorded. The observed membrane potential modulation in in-vitro models is attributed to the variation in membrane surface charge, resulting from the light-driven modulation of the MT dipole moment within the cell membrane. Additionally, a developed mathematical model successfully captures the temporal evolution of the membrane potential upon photostimulation. Despite being insufficient for triggering action potentials, the rapid light-induced depolarization holds potential applications, particularly in cardiac electrophysiology. Low-intensity optical stimulation with these modulators could influence cardiac electrical activity, demonstrating potential efficacy in destabilizing and terminating cardiac arrhythmias. We anticipate the MTs approach to find applications in neuroscience, biomedicine, and biophotonics, providing a tool for modulating cell physiology without genetic interventions.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01669-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01669-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种具有推拉特性的膜靶向偶氮苯(MTs)家族,作为细胞刺激的新工具。这些分子是水溶性的,可以在细胞膜上自动分解。在光照射下,它们从反式异构到顺式异构,改变了局部电荷分布,从而刺激了细胞反应。具体来说,MTs光异构化诱导了清晰和可重复的去极化。人们对最有希望的物种MTP2进行了广泛的研究。时间分辨光谱技术提供了对激发态演化的见解和对其异构化反应的完整理解。分子动力学模拟揭示了该化合物自发和稳定地进入细胞膜,而没有显着改变双层厚度。MTP2在不同的细胞类型中进行了测试,包括HEK293T细胞、原代神经元和心肌细胞,并且始终记录到稳定的去极化。在体外模型中观察到的膜电位调制归因于膜表面电荷的变化,这是由细胞膜内MT偶极矩的光驱动调制引起的。此外,开发的数学模型成功地捕获了光刺激下膜电位的时间演变。尽管不足以触发动作电位,但快速光诱导去极化具有潜在的应用,特别是在心脏电生理方面。使用这些调节剂的低强度光刺激可以影响心脏电活动,显示出在稳定和终止心律失常方面的潜在功效。我们期望MTs方法能在神经科学、生物医学和生物光子学中找到应用,为不需要基因干预的细胞生理学调节提供一种工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Membrane-targeted push-pull azobenzenes for the optical modulation of membrane potential

Membrane-targeted push-pull azobenzenes for the optical modulation of membrane potential

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response. Specifically, MTs photoisomerization induces clear and reproducible depolarization. The most promising species, MTP2, was extensively studied. Time-resolved spectroscopy techniques provide insights into the excited state evolution and a complete understanding of its isomerization reaction. Molecular Dynamics simulations reveal the spontaneous and stable partitioning of the compound into the cellular membrane, without significant alterations to the bilayer thickness. MTP2 was tested in different cell types, including HEK293T cells, primary neurons, and cardiomyocytes, and a steady depolarization is always recorded. The observed membrane potential modulation in in-vitro models is attributed to the variation in membrane surface charge, resulting from the light-driven modulation of the MT dipole moment within the cell membrane. Additionally, a developed mathematical model successfully captures the temporal evolution of the membrane potential upon photostimulation. Despite being insufficient for triggering action potentials, the rapid light-induced depolarization holds potential applications, particularly in cardiac electrophysiology. Low-intensity optical stimulation with these modulators could influence cardiac electrical activity, demonstrating potential efficacy in destabilizing and terminating cardiac arrhythmias. We anticipate the MTs approach to find applications in neuroscience, biomedicine, and biophotonics, providing a tool for modulating cell physiology without genetic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信