Mohammad Yasir, Brian Hu, Ting-Chih Lin, Krzysztof Matyjaszewski
{"title":"活开环复分解聚合和原子转移自由基聚合协同合成结构定制和工程大分子网络","authors":"Mohammad Yasir, Brian Hu, Ting-Chih Lin, Krzysztof Matyjaszewski","doi":"10.1021/acs.langmuir.4c03654","DOIUrl":null,"url":null,"abstract":"Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes. On the other hand, living ring-opening metathesis polymerization (ROMP) can produce a polymeric network with latent ATRP initiator sites in high selectivity. Herein, for the first time, we report the syntheses of STEM zero-generation (STEM-0) networks using a monomer, a cross-linker, and an ATRP/ROMP inimer via living ROMP, followed by their modification using a second monomer via ATRP to synthesize STEM first-generation (STEM-1) networks. The mechanical property and swelling capacity analyses of these networks were carried out. A change in mechanical properties and swelling capacity of these networks was observed due to their structural modification.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"14 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Combination of Living Ring-Opening Metathesis Polymerization and Atom Transfer Radical Polymerization to Synthesize Structurally Tailored and Engineered Macromolecular Networks\",\"authors\":\"Mohammad Yasir, Brian Hu, Ting-Chih Lin, Krzysztof Matyjaszewski\",\"doi\":\"10.1021/acs.langmuir.4c03654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes. On the other hand, living ring-opening metathesis polymerization (ROMP) can produce a polymeric network with latent ATRP initiator sites in high selectivity. Herein, for the first time, we report the syntheses of STEM zero-generation (STEM-0) networks using a monomer, a cross-linker, and an ATRP/ROMP inimer via living ROMP, followed by their modification using a second monomer via ATRP to synthesize STEM first-generation (STEM-1) networks. The mechanical property and swelling capacity analyses of these networks were carried out. A change in mechanical properties and swelling capacity of these networks was observed due to their structural modification.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03654\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03654","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic Combination of Living Ring-Opening Metathesis Polymerization and Atom Transfer Radical Polymerization to Synthesize Structurally Tailored and Engineered Macromolecular Networks
Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes. On the other hand, living ring-opening metathesis polymerization (ROMP) can produce a polymeric network with latent ATRP initiator sites in high selectivity. Herein, for the first time, we report the syntheses of STEM zero-generation (STEM-0) networks using a monomer, a cross-linker, and an ATRP/ROMP inimer via living ROMP, followed by their modification using a second monomer via ATRP to synthesize STEM first-generation (STEM-1) networks. The mechanical property and swelling capacity analyses of these networks were carried out. A change in mechanical properties and swelling capacity of these networks was observed due to their structural modification.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).