支配背根神经节神经元使用依赖性尖峰拓宽可塑性的分子机制

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tyler D. Alexander, Stephen Tymanskyj, Kyle J. Kennedy, Leonard K. Kaczmarek, Manuel Covarrubias
{"title":"支配背根神经节神经元使用依赖性尖峰拓宽可塑性的分子机制","authors":"Tyler D. Alexander, Stephen Tymanskyj, Kyle J. Kennedy, Leonard K. Kaczmarek, Manuel Covarrubias","doi":"10.1073/pnas.2411033121","DOIUrl":null,"url":null,"abstract":"Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K <jats:sup>+</jats:sup> (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.4 channel modulates UDSB in rat dorsal root ganglion (DRG) neurons. The Kv3.4 phosphonull variant promotes slow recovery from inactivation, cumulative inactivation, and UDSB. In contrast, the Kv3.4 phosphomimic variant promotes fast recovery from inactivation and robust resistance to cumulative inactivation and UDSB. Furthermore, knocking down Kv3.4 maximizes AP width and eliminates UDSB modulation. Together with the evidence from previous work, the results concretely suggest how dynamic UDSB modulation governed by multisite phosphorylation of the NTID of Kv3.4 in DRG neurons may play a significant role in mechanosensory transduction and pain modulation.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"14 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanism governing the plasticity of use-dependent spike broadening in dorsal root ganglion neurons\",\"authors\":\"Tyler D. Alexander, Stephen Tymanskyj, Kyle J. Kennedy, Leonard K. Kaczmarek, Manuel Covarrubias\",\"doi\":\"10.1073/pnas.2411033121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K <jats:sup>+</jats:sup> (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.4 channel modulates UDSB in rat dorsal root ganglion (DRG) neurons. The Kv3.4 phosphonull variant promotes slow recovery from inactivation, cumulative inactivation, and UDSB. In contrast, the Kv3.4 phosphomimic variant promotes fast recovery from inactivation and robust resistance to cumulative inactivation and UDSB. Furthermore, knocking down Kv3.4 maximizes AP width and eliminates UDSB modulation. Together with the evidence from previous work, the results concretely suggest how dynamic UDSB modulation governed by multisite phosphorylation of the NTID of Kv3.4 in DRG neurons may play a significant role in mechanosensory transduction and pain modulation.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2411033121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2411033121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用依赖性尖峰增宽(UDSB)是由调节动作电位复极化的电压门控K + (Kv)通道失活引起的。然而,调节UDSB的特定信号和分子过程仍然难以捉摸。在这里,我们应用腺相关病毒载体方法和动态箝制来最终证明Kv3.4通道n端失活域(NTID)的多位点磷酸化如何调节大鼠背根神经节(DRG)神经元的UDSB。Kv3.4磷酰变体促进失活、累积失活和UDSB的缓慢恢复。相比之下,Kv3.4磷酰亚胺变体促进失活后的快速恢复和对累积失活和UDSB的强大抗性。此外,降低Kv3.4使AP宽度最大化并消除UDSB调制。结合以往的研究结果,这些结果具体地表明DRG神经元中Kv3.4的NTID多位点磷酸化调控的动态UDSB调节可能在机械感觉传导和疼痛调节中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular mechanism governing the plasticity of use-dependent spike broadening in dorsal root ganglion neurons
Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K + (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.4 channel modulates UDSB in rat dorsal root ganglion (DRG) neurons. The Kv3.4 phosphonull variant promotes slow recovery from inactivation, cumulative inactivation, and UDSB. In contrast, the Kv3.4 phosphomimic variant promotes fast recovery from inactivation and robust resistance to cumulative inactivation and UDSB. Furthermore, knocking down Kv3.4 maximizes AP width and eliminates UDSB modulation. Together with the evidence from previous work, the results concretely suggest how dynamic UDSB modulation governed by multisite phosphorylation of the NTID of Kv3.4 in DRG neurons may play a significant role in mechanosensory transduction and pain modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信