Muhammed Enes Atik, İbrahim Kocak, Nihat Sayin, Sadik Etka Bayramoglu, Ahmet Ozyigit
{"title":"整合光学相干断层扫描图像和真实临床数据的深度学习建模:糖尿病黄斑水肿预后的统一方法。","authors":"Muhammed Enes Atik, İbrahim Kocak, Nihat Sayin, Sadik Etka Bayramoglu, Ahmet Ozyigit","doi":"10.1002/jbio.202400315","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema\",\"authors\":\"Muhammed Enes Atik, İbrahim Kocak, Nihat Sayin, Sadik Etka Bayramoglu, Ahmet Ozyigit\",\"doi\":\"10.1002/jbio.202400315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400315\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400315","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema
The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.