整合光学相干断层扫描图像和真实临床数据的深度学习建模:糖尿病黄斑水肿预后的统一方法。

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Muhammed Enes Atik, İbrahim Kocak, Nihat Sayin, Sadik Etka Bayramoglu, Ahmet Ozyigit
{"title":"整合光学相干断层扫描图像和真实临床数据的深度学习建模:糖尿病黄斑水肿预后的统一方法。","authors":"Muhammed Enes Atik,&nbsp;İbrahim Kocak,&nbsp;Nihat Sayin,&nbsp;Sadik Etka Bayramoglu,&nbsp;Ahmet Ozyigit","doi":"10.1002/jbio.202400315","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema\",\"authors\":\"Muhammed Enes Atik,&nbsp;İbrahim Kocak,&nbsp;Nihat Sayin,&nbsp;Sadik Etka Bayramoglu,&nbsp;Ahmet Ozyigit\",\"doi\":\"10.1002/jbio.202400315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400315\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400315","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病的主要眼部影响是糖尿病视网膜病变(DR),这与糖尿病微血管病变有关。糖尿病性黄斑水肿(DME)可导致dr患者视力丧失,因此,决定适当的治疗和随访对治疗该疾病具有关键作用。目前的人工智能(AI)方法侧重于OCT图像,可能会忽略专家获得的临床、实验室和人口统计信息。本研究提出了一个新的深度学习(DL)框架,用于评估TREX抗vegf玻璃体内注射方案的视觉效果。DL模型经过训练,从OCT和ILM地形图像中提取深度特征,并将获得的深度特征与患者的人口统计学、临床和实验室结果相结合,以预测治疗过程的方向。当使用ResNet-18网络时,所提出的深度学习框架能够以最高的准确率预测患者的预后状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema

Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema

The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信