光对活细菌细胞中蛋白质定位和功能的调控。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ryan McQuillen, Amilcar J Perez, Xinxing Yang, Christopher H Bohrer, Erika L Smith, Sylvia Chareyre, Ho-Ching Tiffany Tsui, Kevin E Bruce, Yin Mon Hla, Joshua W McCausland, Malcolm E Winkler, Erin D Goley, Kumaran S Ramamurthi, Jie Xiao
{"title":"光对活细菌细胞中蛋白质定位和功能的调控。","authors":"Ryan McQuillen, Amilcar J Perez, Xinxing Yang, Christopher H Bohrer, Erika L Smith, Sylvia Chareyre, Ho-Ching Tiffany Tsui, Kevin E Bruce, Yin Mon Hla, Joshua W McCausland, Malcolm E Winkler, Erin D Goley, Kumaran S Ramamurthi, Jie Xiao","doi":"10.1038/s41467-024-54974-9","DOIUrl":null,"url":null,"abstract":"<p><p>Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10746"},"PeriodicalIF":15.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685620/pdf/","citationCount":"0","resultStr":"{\"title\":\"Light-dependent modulation of protein localization and function in living bacteria cells.\",\"authors\":\"Ryan McQuillen, Amilcar J Perez, Xinxing Yang, Christopher H Bohrer, Erika L Smith, Sylvia Chareyre, Ho-Ching Tiffany Tsui, Kevin E Bruce, Yin Mon Hla, Joshua W McCausland, Malcolm E Winkler, Erin D Goley, Kumaran S Ramamurthi, Jie Xiao\",\"doi\":\"10.1038/s41467-024-54974-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"10746\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54974-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54974-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大多数细菌缺乏膜封闭的细胞器,依靠不同亚细胞位置的大分子支架来募集蛋白质以实现特定功能。在这里,我们证明了来自拟南芥的光遗传CRY2-CIB1系统可以用于在活的大肠杆菌细胞中以不同的效率快速将蛋白质定向到不同的亚细胞位置,包括类核、细胞极、膜和细胞分裂面。这种光诱导的再定位可以用来快速抑制活跃分裂的大肠杆菌细胞的细胞分裂。我们进一步表明,CRY2-CIBN结合动力学可以通过绿光调节,为系统增加了一个新的控制维度。最后,我们在另外三种细菌中测试了该光遗传系统,枯草芽孢杆菌、新月形茎状杆菌和肺炎链球菌,为该系统在细菌细胞生物学中的适用性提供了重要的考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light-dependent modulation of protein localization and function in living bacteria cells.

Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信