角化细胞外泌体LOC285194通过调节miR-211-5p/SIRT1轴抑制CD4+T细胞向Th17细胞的分化,从而改善银屑病。

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
IUBMB Life Pub Date : 2024-12-30 DOI:10.1002/iub.2935
Jin Lin, Yi Cao, Lili Ma, Maocan Tao, Xiaohong Yang
{"title":"角化细胞外泌体LOC285194通过调节miR-211-5p/SIRT1轴抑制CD4+T细胞向Th17细胞的分化,从而改善银屑病。","authors":"Jin Lin,&nbsp;Yi Cao,&nbsp;Lili Ma,&nbsp;Maocan Tao,&nbsp;Xiaohong Yang","doi":"10.1002/iub.2935","DOIUrl":null,"url":null,"abstract":"<p>Keratinocytes exosome participates in the pathogenesis of psoriasis and exosomes always carry long non-coding RNAs (lncRNAs) into target cells to function as an essential immune regulator in psoriasis-related diseases. LncRNA LOC285194 is closely associated with the occurrence of psoriasis. However, whether keratinocyte exosomal LOC285194 participates in the process of psoriasis remains vague. Exosomes were authenticated by transmission electron microscope and nanoparticle tracking analysis (NTA). Relative gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry was used to monitor the proportion of immune cells. Fluorescence in situ hybridization was employed to determine the colocalization of lncRNA and miRNA. Keratinocyte exosomal LOC285194 was reduced in psoriasis patients and had a negative association with Th17 cell infiltration in psoriasis patients. LOC285194-downregulation contributed to the differentiation of CD4<sup>+</sup>T cells to Th17 cells. Cytokine cocktail treatment reduced LOC285194 expression in keratinocytes and keratinocyte exosome, subsequently promoted the differentiation of CD4<sup>+</sup>T cells to Th17 cells and Th17 cells-related molecular levels including IL-17A, IL-22 and TNF-α, which were notably abrogated by LOC285194-upregulation in keratinocytes. As a sponge of LOC285194, miR-211-5p inhibition induced the increase of Th17 cell proportion in CD4<sup>+</sup>T cells, while exosomes treatment isolated from cytokine cocktail-exposed keratinocytes further enhanced Th17 cell proportion, which were abolished by LOC285194 overexpressed-exosome treatment. Furthermore, silent information regulator 1 (SIRT1) mediated the regulation role of miR-211-5p on Th17 cell production. Combined with the imiquimod-induced psoriasis animal model, exosomes isolated from LOC285194-overexpressing keratinocytes relieved psoriasis symptom through regulating miR-211-5p/SIRT1 axis. LOC285194 upregulation in keratinocytes promoted the keratinocyte exosomal LOC285194, that could be absorbed by CD4<sup>+</sup>T cells, leading to the inhibition of Th17 cell differentiation through targeting miR-211-5p/SIRT1 axis. This study provides a novel molecular mechanism of Th17 cell accumulation-mediated psoriasis.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"77 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keratinocyte exosomal LOC285194 ameliorates psoriasis by inhibiting the differentiation of CD4+T cells to Th17 cells through regulating miR-211-5p/SIRT1 axis\",\"authors\":\"Jin Lin,&nbsp;Yi Cao,&nbsp;Lili Ma,&nbsp;Maocan Tao,&nbsp;Xiaohong Yang\",\"doi\":\"10.1002/iub.2935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Keratinocytes exosome participates in the pathogenesis of psoriasis and exosomes always carry long non-coding RNAs (lncRNAs) into target cells to function as an essential immune regulator in psoriasis-related diseases. LncRNA LOC285194 is closely associated with the occurrence of psoriasis. However, whether keratinocyte exosomal LOC285194 participates in the process of psoriasis remains vague. Exosomes were authenticated by transmission electron microscope and nanoparticle tracking analysis (NTA). Relative gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry was used to monitor the proportion of immune cells. Fluorescence in situ hybridization was employed to determine the colocalization of lncRNA and miRNA. Keratinocyte exosomal LOC285194 was reduced in psoriasis patients and had a negative association with Th17 cell infiltration in psoriasis patients. LOC285194-downregulation contributed to the differentiation of CD4<sup>+</sup>T cells to Th17 cells. Cytokine cocktail treatment reduced LOC285194 expression in keratinocytes and keratinocyte exosome, subsequently promoted the differentiation of CD4<sup>+</sup>T cells to Th17 cells and Th17 cells-related molecular levels including IL-17A, IL-22 and TNF-α, which were notably abrogated by LOC285194-upregulation in keratinocytes. As a sponge of LOC285194, miR-211-5p inhibition induced the increase of Th17 cell proportion in CD4<sup>+</sup>T cells, while exosomes treatment isolated from cytokine cocktail-exposed keratinocytes further enhanced Th17 cell proportion, which were abolished by LOC285194 overexpressed-exosome treatment. Furthermore, silent information regulator 1 (SIRT1) mediated the regulation role of miR-211-5p on Th17 cell production. Combined with the imiquimod-induced psoriasis animal model, exosomes isolated from LOC285194-overexpressing keratinocytes relieved psoriasis symptom through regulating miR-211-5p/SIRT1 axis. LOC285194 upregulation in keratinocytes promoted the keratinocyte exosomal LOC285194, that could be absorbed by CD4<sup>+</sup>T cells, leading to the inhibition of Th17 cell differentiation through targeting miR-211-5p/SIRT1 axis. This study provides a novel molecular mechanism of Th17 cell accumulation-mediated psoriasis.</p>\",\"PeriodicalId\":14728,\"journal\":{\"name\":\"IUBMB Life\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUBMB Life\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/iub.2935\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iub.2935","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

角质形成细胞外泌体参与银屑病的发病,外泌体总是携带长链非编码rna (lncRNAs)进入靶细胞,在银屑病相关疾病中发挥重要的免疫调节作用。LncRNA LOC285194与牛皮癣的发生密切相关。然而,角化细胞外泌体LOC285194是否参与银屑病的发病过程尚不清楚。外泌体通过透射电镜和纳米颗粒跟踪分析(NTA)进行鉴定。通过逆转录聚合酶链反应(RT-PCR)检测相对基因表达。流式细胞术检测免疫细胞比例。荧光原位杂交法测定lncRNA和miRNA的共定位。银屑病患者角质细胞外泌体LOC285194减少,与银屑病患者Th17细胞浸润呈负相关。loc285194下调有助于CD4+T细胞向Th17细胞分化。细胞因子鸡尾酒处理降低了LOC285194在角质形成细胞和角质形成细胞外泌体中的表达,随后促进CD4+T细胞向Th17细胞和Th17细胞相关分子水平的分化,包括IL-17A、IL-22和TNF-α,而这些水平被角质形成细胞中LOC285194的上调明显消除。作为LOC285194的海绵,miR-211-5p抑制诱导CD4+T细胞中Th17细胞比例增加,而从细胞因子鸡尾酒暴露的角质形成细胞中分离的外泌体处理进一步提高了Th17细胞比例,通过过表达的LOC285194外泌体处理可以消除Th17细胞比例。此外,沉默信息调节因子1 (SIRT1)介导miR-211-5p对Th17细胞生成的调节作用。结合吡喹莫德诱导银屑病动物模型,从过表达loc285194的角质形成细胞中分离的外泌体通过调节miR-211-5p/SIRT1轴缓解银屑病症状。角化细胞中LOC285194的上调促进了角化细胞外泌体LOC285194,可被CD4+T细胞吸收,通过靶向miR-211-5p/SIRT1轴抑制Th17细胞分化。本研究为Th17细胞积累介导的银屑病提供了一种新的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keratinocyte exosomal LOC285194 ameliorates psoriasis by inhibiting the differentiation of CD4+T cells to Th17 cells through regulating miR-211-5p/SIRT1 axis

Keratinocytes exosome participates in the pathogenesis of psoriasis and exosomes always carry long non-coding RNAs (lncRNAs) into target cells to function as an essential immune regulator in psoriasis-related diseases. LncRNA LOC285194 is closely associated with the occurrence of psoriasis. However, whether keratinocyte exosomal LOC285194 participates in the process of psoriasis remains vague. Exosomes were authenticated by transmission electron microscope and nanoparticle tracking analysis (NTA). Relative gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry was used to monitor the proportion of immune cells. Fluorescence in situ hybridization was employed to determine the colocalization of lncRNA and miRNA. Keratinocyte exosomal LOC285194 was reduced in psoriasis patients and had a negative association with Th17 cell infiltration in psoriasis patients. LOC285194-downregulation contributed to the differentiation of CD4+T cells to Th17 cells. Cytokine cocktail treatment reduced LOC285194 expression in keratinocytes and keratinocyte exosome, subsequently promoted the differentiation of CD4+T cells to Th17 cells and Th17 cells-related molecular levels including IL-17A, IL-22 and TNF-α, which were notably abrogated by LOC285194-upregulation in keratinocytes. As a sponge of LOC285194, miR-211-5p inhibition induced the increase of Th17 cell proportion in CD4+T cells, while exosomes treatment isolated from cytokine cocktail-exposed keratinocytes further enhanced Th17 cell proportion, which were abolished by LOC285194 overexpressed-exosome treatment. Furthermore, silent information regulator 1 (SIRT1) mediated the regulation role of miR-211-5p on Th17 cell production. Combined with the imiquimod-induced psoriasis animal model, exosomes isolated from LOC285194-overexpressing keratinocytes relieved psoriasis symptom through regulating miR-211-5p/SIRT1 axis. LOC285194 upregulation in keratinocytes promoted the keratinocyte exosomal LOC285194, that could be absorbed by CD4+T cells, leading to the inhibition of Th17 cell differentiation through targeting miR-211-5p/SIRT1 axis. This study provides a novel molecular mechanism of Th17 cell accumulation-mediated psoriasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IUBMB Life
IUBMB Life 生物-生化与分子生物学
CiteScore
10.60
自引率
0.00%
发文量
109
审稿时长
4-8 weeks
期刊介绍: IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信