定制组织概率图和模板对特发性常压脑积水患者的效用:计算解剖学工具箱(CAT12)研究。

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Shigenori Kanno, Junyan Liu, Ai Kawamura, Shoko Ota, Nobuko Kawakami, Chifumi Iseki, Kazuo Kakinuma, Shiho Matsubara, Kazuto Katsuse, Kazushi Sato, Takashi Takeuchi, Yoshitaka Tanaka, Hiroyasu Kodama, Tatsuo Nagasaka, Masahiro Sai, Hayato Odagiri, Mioko Saito, Kentaro Takanami, Shunji Mugikura, Kyoko Suzuki
{"title":"定制组织概率图和模板对特发性常压脑积水患者的效用:计算解剖学工具箱(CAT12)研究。","authors":"Shigenori Kanno, Junyan Liu, Ai Kawamura, Shoko Ota, Nobuko Kawakami, Chifumi Iseki, Kazuo Kakinuma, Shiho Matsubara, Kazuto Katsuse, Kazushi Sato, Takashi Takeuchi, Yoshitaka Tanaka, Hiroyasu Kodama, Tatsuo Nagasaka, Masahiro Sai, Hayato Odagiri, Mioko Saito, Kentaro Takanami, Shunji Mugikura, Kyoko Suzuki","doi":"10.1186/s12987-024-00611-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Disproportionately enlarged subarachnoid space hydrocephalus (DESH) is one of the neuroradiological characteristics of idiopathic normal pressure hydrocephalus (iNPH), which makes statistical analyses of brain images difficult. This study aimed to develop and validate methods of accurate brain segmentation and spatial normalisation in patients with DESH by using the Computational Anatomy Toolbox (CAT12).</p><p><strong>Methods: </strong>Two hundred ninety-eight iNPH patients with DESH and 25 healthy controls (HCs) who underwent cranial MRI were enrolled in this study. We selected the structural images of 169 patients to create customised tissue probability maps and diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) templates for patients with DESH (DESH-TPM and DESH-Template). The structural images of 38 other patients were used to evaluate the validity of the DESH-TPM and DESH-Template. DESH-TPM and DESH-Template were created using the 114 well-segmented images after the segmentation processing of CAT12. In the validation study, we compared the accuracy of brain segmentation and spatial normalisation among three conditions: customised condition, applying DESH-TPM and DESH-Template to CAT12 and patient images; standard condition, applying the default setting of CAT12 to patient images; and reference condition, applying the default setting of CAT12 to HC images.</p><p><strong>Results: </strong>In the validation study, we identified three error types during segmentation. (1) The proportions of misidentifying the dura and/or extradural structures as brain structures in the customised, standard, and reference conditions were 10.5%, 44.7%, and 13.6%, respectively; (2) the failure rates of white matter hypointensity (WMH) cancellation in the customised, standard, and reference conditions were 18.4%, 44.7%, and 0%, respectively; and (3) the proportions of cerebrospinal fluid (CSF)-image deficits in the customised, standard, and reference conditions were 97.4%, 84.2%, and 28%, respectively. The spatial normalisation accuracy of grey and white matter images in the customised condition was the highest among the three conditions, especially in terms of superior convexity.</p><p><strong>Conclusions: </strong>Applying the combination of the DESH-TPM and DESH-Template to CAT12 could improve the accuracy of grey and white matter segmentation and spatial normalisation in patients with DESH. However, this combination could not improve the CSF segmentation accuracy. Another approach is needed to overcome this challenge.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"108"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687168/pdf/","citationCount":"0","resultStr":"{\"title\":\"The utility of customised tissue probability maps and templates for patients with idiopathic normal pressure hydrocephalus: a computational anatomy toolbox (CAT12) study.\",\"authors\":\"Shigenori Kanno, Junyan Liu, Ai Kawamura, Shoko Ota, Nobuko Kawakami, Chifumi Iseki, Kazuo Kakinuma, Shiho Matsubara, Kazuto Katsuse, Kazushi Sato, Takashi Takeuchi, Yoshitaka Tanaka, Hiroyasu Kodama, Tatsuo Nagasaka, Masahiro Sai, Hayato Odagiri, Mioko Saito, Kentaro Takanami, Shunji Mugikura, Kyoko Suzuki\",\"doi\":\"10.1186/s12987-024-00611-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Disproportionately enlarged subarachnoid space hydrocephalus (DESH) is one of the neuroradiological characteristics of idiopathic normal pressure hydrocephalus (iNPH), which makes statistical analyses of brain images difficult. This study aimed to develop and validate methods of accurate brain segmentation and spatial normalisation in patients with DESH by using the Computational Anatomy Toolbox (CAT12).</p><p><strong>Methods: </strong>Two hundred ninety-eight iNPH patients with DESH and 25 healthy controls (HCs) who underwent cranial MRI were enrolled in this study. We selected the structural images of 169 patients to create customised tissue probability maps and diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) templates for patients with DESH (DESH-TPM and DESH-Template). The structural images of 38 other patients were used to evaluate the validity of the DESH-TPM and DESH-Template. DESH-TPM and DESH-Template were created using the 114 well-segmented images after the segmentation processing of CAT12. In the validation study, we compared the accuracy of brain segmentation and spatial normalisation among three conditions: customised condition, applying DESH-TPM and DESH-Template to CAT12 and patient images; standard condition, applying the default setting of CAT12 to patient images; and reference condition, applying the default setting of CAT12 to HC images.</p><p><strong>Results: </strong>In the validation study, we identified three error types during segmentation. (1) The proportions of misidentifying the dura and/or extradural structures as brain structures in the customised, standard, and reference conditions were 10.5%, 44.7%, and 13.6%, respectively; (2) the failure rates of white matter hypointensity (WMH) cancellation in the customised, standard, and reference conditions were 18.4%, 44.7%, and 0%, respectively; and (3) the proportions of cerebrospinal fluid (CSF)-image deficits in the customised, standard, and reference conditions were 97.4%, 84.2%, and 28%, respectively. The spatial normalisation accuracy of grey and white matter images in the customised condition was the highest among the three conditions, especially in terms of superior convexity.</p><p><strong>Conclusions: </strong>Applying the combination of the DESH-TPM and DESH-Template to CAT12 could improve the accuracy of grey and white matter segmentation and spatial normalisation in patients with DESH. However, this combination could not improve the CSF segmentation accuracy. Another approach is needed to overcome this challenge.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"21 1\",\"pages\":\"108\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00611-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00611-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:不成比例增大的蛛网膜下腔脑积水(DESH)是特发性常压脑积水(iNPH)的神经影像学特征之一,这使得脑图像的统计分析变得困难。本研究旨在利用计算解剖工具箱(CAT12)开发和验证DESH患者准确的脑分割和空间正常化方法。方法:298例合并DESH的iNPH患者和25例接受颅脑MRI检查的健康对照(hc)纳入本研究。我们选择了169例患者的结构图像,通过DESH患者的指数李代数(DARTEL)模板(DESH- tpm和DESH- template)创建定制的组织概率图和微分解剖配准。另外38例患者的结构图像用于评价DESH-TPM和DESH-Template的有效性。利用114张经过CAT12分割处理的分割良好的图像,创建了DESH-TPM和DESH-Template。在验证研究中,我们比较了三种条件下脑分割和空间归一化的准确性:定制条件,将DESH-TPM和DESH-Template应用于CAT12和患者图像;标准条件下,将CAT12的默认设置应用于患者图像;和参考条件,对HC图像应用CAT12的默认设置。结果:在验证研究中,我们确定了分割过程中的三种错误类型。(1)在定制、标准和参考条件下,将硬脑膜和/或硬脑膜外结构误认为脑部结构的比例分别为10.5%、44.7%和13.6%;(2)定制条件、标准条件和参考条件下白质低密度(WMH)消除失败率分别为18.4%、44.7%和0%;(3)在定制、标准和参考条件下,脑脊液(CSF)图像缺陷的比例分别为97.4%、84.2%和28%。在三种条件下,定制条件下的灰质和白质图像的空间归一化精度最高,特别是在优越的凸性方面。结论:将DESH- tpm与DESH- template联合应用于CAT12可以提高DESH患者灰质和白质分割和空间归一化的准确性。然而,这种组合并不能提高脑脊液分割的准确性。需要另一种方法来克服这一挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The utility of customised tissue probability maps and templates for patients with idiopathic normal pressure hydrocephalus: a computational anatomy toolbox (CAT12) study.

Background: Disproportionately enlarged subarachnoid space hydrocephalus (DESH) is one of the neuroradiological characteristics of idiopathic normal pressure hydrocephalus (iNPH), which makes statistical analyses of brain images difficult. This study aimed to develop and validate methods of accurate brain segmentation and spatial normalisation in patients with DESH by using the Computational Anatomy Toolbox (CAT12).

Methods: Two hundred ninety-eight iNPH patients with DESH and 25 healthy controls (HCs) who underwent cranial MRI were enrolled in this study. We selected the structural images of 169 patients to create customised tissue probability maps and diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) templates for patients with DESH (DESH-TPM and DESH-Template). The structural images of 38 other patients were used to evaluate the validity of the DESH-TPM and DESH-Template. DESH-TPM and DESH-Template were created using the 114 well-segmented images after the segmentation processing of CAT12. In the validation study, we compared the accuracy of brain segmentation and spatial normalisation among three conditions: customised condition, applying DESH-TPM and DESH-Template to CAT12 and patient images; standard condition, applying the default setting of CAT12 to patient images; and reference condition, applying the default setting of CAT12 to HC images.

Results: In the validation study, we identified three error types during segmentation. (1) The proportions of misidentifying the dura and/or extradural structures as brain structures in the customised, standard, and reference conditions were 10.5%, 44.7%, and 13.6%, respectively; (2) the failure rates of white matter hypointensity (WMH) cancellation in the customised, standard, and reference conditions were 18.4%, 44.7%, and 0%, respectively; and (3) the proportions of cerebrospinal fluid (CSF)-image deficits in the customised, standard, and reference conditions were 97.4%, 84.2%, and 28%, respectively. The spatial normalisation accuracy of grey and white matter images in the customised condition was the highest among the three conditions, especially in terms of superior convexity.

Conclusions: Applying the combination of the DESH-TPM and DESH-Template to CAT12 could improve the accuracy of grey and white matter segmentation and spatial normalisation in patients with DESH. However, this combination could not improve the CSF segmentation accuracy. Another approach is needed to overcome this challenge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信