Alexander M Cancelli, Asfaw Bekele, Andrea K Borkenhagen
{"title":"湿地植物对油砂过程影响水体中金属的吸收:一个案例研究。","authors":"Alexander M Cancelli, Asfaw Bekele, Andrea K Borkenhagen","doi":"10.1080/09593330.2024.2443600","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta. Overall, results show that OSPW from the Kearl oil sands mine has relatively low concentrations of metals and trace elements compared to other industrial OSPW. Of the inorganic constituents introduced into the wetland from OSPW, six analytes (As, Ba, Cu, Mo, Ni, and U) were found to depurate by wetland treatment, were distributed among wetland media (water, sediment, plants), and translocated into water sedge and cattail tissue. Depuration of these analytes from the OSPW occurred mainly through sorption to sediment, while Mo and Cu had higher uptake and storage within plant tissue compared to the other analytes. No significant differences in metal uptake were observed between cattails and water sedge; root concentrations were higher than leaf concentrations. Root and leaf concentration factors were similar across years indicating that mechanisms of plant uptake were not impacted by exposure to OSPW and that bioconcentration was mainly a function of exposure. These findings support continued investigation into the application of treatment wetlands for OSPW remediation and underscore the need for further studies to optimize these systems for diverse OSPW types.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"2681-2695"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal uptake in wetland plants from oil sands process-affected waters: a case study.\",\"authors\":\"Alexander M Cancelli, Asfaw Bekele, Andrea K Borkenhagen\",\"doi\":\"10.1080/09593330.2024.2443600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta. Overall, results show that OSPW from the Kearl oil sands mine has relatively low concentrations of metals and trace elements compared to other industrial OSPW. Of the inorganic constituents introduced into the wetland from OSPW, six analytes (As, Ba, Cu, Mo, Ni, and U) were found to depurate by wetland treatment, were distributed among wetland media (water, sediment, plants), and translocated into water sedge and cattail tissue. Depuration of these analytes from the OSPW occurred mainly through sorption to sediment, while Mo and Cu had higher uptake and storage within plant tissue compared to the other analytes. No significant differences in metal uptake were observed between cattails and water sedge; root concentrations were higher than leaf concentrations. Root and leaf concentration factors were similar across years indicating that mechanisms of plant uptake were not impacted by exposure to OSPW and that bioconcentration was mainly a function of exposure. These findings support continued investigation into the application of treatment wetlands for OSPW remediation and underscore the need for further studies to optimize these systems for diverse OSPW types.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"2681-2695\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2443600\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2443600","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Metal uptake in wetland plants from oil sands process-affected waters: a case study.
Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta. Overall, results show that OSPW from the Kearl oil sands mine has relatively low concentrations of metals and trace elements compared to other industrial OSPW. Of the inorganic constituents introduced into the wetland from OSPW, six analytes (As, Ba, Cu, Mo, Ni, and U) were found to depurate by wetland treatment, were distributed among wetland media (water, sediment, plants), and translocated into water sedge and cattail tissue. Depuration of these analytes from the OSPW occurred mainly through sorption to sediment, while Mo and Cu had higher uptake and storage within plant tissue compared to the other analytes. No significant differences in metal uptake were observed between cattails and water sedge; root concentrations were higher than leaf concentrations. Root and leaf concentration factors were similar across years indicating that mechanisms of plant uptake were not impacted by exposure to OSPW and that bioconcentration was mainly a function of exposure. These findings support continued investigation into the application of treatment wetlands for OSPW remediation and underscore the need for further studies to optimize these systems for diverse OSPW types.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current