天然水体纳滤去除微污染物的机理研究。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-06-01 Epub Date: 2024-12-31 DOI:10.1080/09593330.2024.2439137
Penglin Fan, Lydie Paugam, Pierre-François Biard, Anthony Szymczyk
{"title":"天然水体纳滤去除微污染物的机理研究。","authors":"Penglin Fan, Lydie Paugam, Pierre-François Biard, Anthony Szymczyk","doi":"10.1080/09593330.2024.2439137","DOIUrl":null,"url":null,"abstract":"<p><p>A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"2558-2569"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic study of micropollutants rejection by nanofiltration of a natural water.\",\"authors\":\"Penglin Fan, Lydie Paugam, Pierre-François Biard, Anthony Szymczyk\",\"doi\":\"10.1080/09593330.2024.2439137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"2558-2569\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2439137\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2439137","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

采用松散纳滤膜处理经过砂滤步骤并加入四种有机微污染物(甲草胺ESA、甲草胺NOA、去乙基latrazine和三聚乙醛)的天然水。利用空间、电、介电模型(SEDE)预测膜对水基质中各种离子和微污染物的分离性能,研究离子和微污染物在膜中的传输机制。SEDE模型可以很好地预测无机阴离子和阳离子,以及中性(去乙基latrazine和三聚乙醛)和电荷(异丙草胺ESA和异丙草胺NOA)微污染物的排斥序列。发现介电排斥机制可以忽略不计,很可能是由于膜的松散结构。阳离子(反离子)的复杂行为可以用Donnan排斥、电迁移和位阻效应之间的相互作用来解释。发现该模型高估了带电荷的微污染物,如异丙草胺NOA和异丙草胺ESA的截留。这可能是由于微污染物在天然有机物(NOM)的一些弱拒绝组分(如腐殖质)上的吸附,而在复制天然水基质的离子组成但缺乏NOM的模型溶液中观察到较高的拒绝率支持了这一观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic study of micropollutants rejection by nanofiltration of a natural water.

A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信