Penglin Fan, Lydie Paugam, Pierre-François Biard, Anthony Szymczyk
{"title":"天然水体纳滤去除微污染物的机理研究。","authors":"Penglin Fan, Lydie Paugam, Pierre-François Biard, Anthony Szymczyk","doi":"10.1080/09593330.2024.2439137","DOIUrl":null,"url":null,"abstract":"<p><p>A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"2558-2569"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic study of micropollutants rejection by nanofiltration of a natural water.\",\"authors\":\"Penglin Fan, Lydie Paugam, Pierre-François Biard, Anthony Szymczyk\",\"doi\":\"10.1080/09593330.2024.2439137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"2558-2569\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2439137\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2439137","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mechanistic study of micropollutants rejection by nanofiltration of a natural water.
A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current