GHSR和GLP-1R在下丘脑神经元子集中的选择性共定位及其功能相互作用。

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Julieta Aguggia, Gimena Fernandez, Daniela Cassano, Emilio R Mustafá, Silvia S Rodríguez, Sonia Cantel, Jean-Alain Fehrentz, Jesica Raingo, Helgi B Schiöth, Abdella M Habib, Pablo N De Francesco, Mario Perello
{"title":"GHSR和GLP-1R在下丘脑神经元子集中的选择性共定位及其功能相互作用。","authors":"Julieta Aguggia, Gimena Fernandez, Daniela Cassano, Emilio R Mustafá, Silvia S Rodríguez, Sonia Cantel, Jean-Alain Fehrentz, Jesica Raingo, Helgi B Schiöth, Abdella M Habib, Pablo N De Francesco, Mario Perello","doi":"10.1210/endocr/bqae160","DOIUrl":null,"url":null,"abstract":"<p><p>The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":"166 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.\",\"authors\":\"Julieta Aguggia, Gimena Fernandez, Daniela Cassano, Emilio R Mustafá, Silvia S Rodríguez, Sonia Cantel, Jean-Alain Fehrentz, Jesica Raingo, Helgi B Schiöth, Abdella M Habib, Pablo N De Francesco, Mario Perello\",\"doi\":\"10.1210/endocr/bqae160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqae160\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae160","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

生长激素促分泌受体(GHSR)和胰高血糖素样肽-1受体(GLP-1R)是G蛋白偶联受体,在调节能量平衡方面具有关键但相反的作用。有趣的是,这些受体在重叠的大脑区域表达。然而,它们针对相同神经元并参与分子串扰的程度仍不清楚。为了探索GHSR和GLP-1R在特定神经元中的潜在共定位,我们使用GHSR- egfp报告小鼠或注入荧光ghrelin的野生型小鼠,以及抗GLP-1R抗体,对这两种受体均阳性的细胞进行了详细的定位。我们发现GHSR+和GLP-1R+细胞在小鼠大脑中大量分离。在下丘脑弓状核中观察到最高的重叠,其中15%至20%的GHSR+细胞也是GLP-1R+细胞。此外,我们检查了来自小鼠和人类大脑的rna测序数据集,以评估表达这两种受体的神经元的比例和分布,发现双阳性Ghsr+/Glp1r+细胞高度分离,双阳性Ghsr+/Glp1r+细胞代表一小部分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信