通过自由基聚合为高效分子筛分定制稳健的二维纳米通道。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue You, Yuxi Ma, Xianghui Zeng, Yichao Wang, Juan Du, Yijun Qian, Guoliang Yang, Yuyu Su, Weiwei Lei, Shuaifei Zhao, Yan Qing, Yiqiang Wu, Jingliang Li
{"title":"通过自由基聚合为高效分子筛分定制稳健的二维纳米通道。","authors":"Yue You,&nbsp;Yuxi Ma,&nbsp;Xianghui Zeng,&nbsp;Yichao Wang,&nbsp;Juan Du,&nbsp;Yijun Qian,&nbsp;Guoliang Yang,&nbsp;Yuyu Su,&nbsp;Weiwei Lei,&nbsp;Shuaifei Zhao,&nbsp;Yan Qing,&nbsp;Yiqiang Wu,&nbsp;Jingliang Li","doi":"10.1002/advs.202409556","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799–1.410 nm, resulting in a variable water permeance of up to 218 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 8","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409556","citationCount":"0","resultStr":"{\"title\":\"Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving\",\"authors\":\"Yue You,&nbsp;Yuxi Ma,&nbsp;Xianghui Zeng,&nbsp;Yichao Wang,&nbsp;Juan Du,&nbsp;Yijun Qian,&nbsp;Guoliang Yang,&nbsp;Yuyu Su,&nbsp;Weiwei Lei,&nbsp;Shuaifei Zhao,&nbsp;Yan Qing,&nbsp;Yiqiang Wu,&nbsp;Jingliang Li\",\"doi\":\"10.1002/advs.202409556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799–1.410 nm, resulting in a variable water permeance of up to 218 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409556\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409556\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409556","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)纳米通道由于其均匀的分子通道尺寸和层间物理/化学性质,在筛选特定分子或离子方面表现出优异的性能。然而,如何在实现高机械强度的同时,对特定尺寸的纳米通道空间进行可控调谐仍然是主要的挑战。在这项工作中,通过一般的自由基诱导聚合策略,成功地定制了氧化石墨烯(GO)膜的片间画廊d间距,具有高机械强度。从n -乙烯基甲酰胺中引入的酰胺基团显著增强了独立膜内的二维纳米通道,从而获得了高达105 MPa的超高拉伸强度。膜的d-间距可在0.799-1.410 nm的范围内进行可控调节,从而获得高达218 L m-2 h-1 bar-1的可变水透性(比原始氧化石墨烯膜高1304%)。特别是,定制膜在200小时的长期运行中表现出优异的水渗透稳定性(140 L m-2 h-1 bar-1),并且在恶劣条件下(包括从4.0到10.0的广泛pH范围,高达12 bar的负载压力和40°C的外部温度)具有高的溶质选择性。该方法全面实现了筛分性能和机械强度的平衡,满足了新一代分子筛膜的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving

Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving

Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799–1.410 nm, resulting in a variable water permeance of up to 218 L m−2 h−1 bar−1 (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m−2 h−1 bar−1) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信