TabHLH489通过抑制小麦中TaNLP7-3A的功能来抑制硝酸盐信号转导。

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fan Yang, Xuepeng Li, Songyu Liu, Jinyang Lyu, Zixuan Ge, Ming-Yi Bai
{"title":"TabHLH489通过抑制小麦中TaNLP7-3A的功能来抑制硝酸盐信号转导。","authors":"Fan Yang, Xuepeng Li, Songyu Liu, Jinyang Lyu, Zixuan Ge, Ming-Yi Bai","doi":"10.1111/jipb.13832","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling. Overexpressing TabHLH489 significantly reduced nitrate-promoted wheat growth and grain yield. Transcriptomic analysis showed that approximately 75% of nitrate-responsive genes were no longerregulated by nitrate in the TabHLH489 overexpression lines. TabHLH489 directly interacts with TaNLP7-3A, the wheat homolog protein of NIN-like protein 7 (NLP7), a central transcription factor in nitrate signaling. This interaction impairs TaNLP7-3A's ability to bind DNA, thereby inhibiting its transcriptional activity. Moreover, TabHLH489 induces the accumulation of reactive oxygen species (ROS) to reduce the nuclear localization of TaNLP7-3A, thereby diminishing its effectiveness in regulating the plant nitrogen response. These findings highlight the intricate regulatory mechanism by which TabHLH489 modulates TaNLP7-3A activity through direct interaction and ROS-mediated inhibition of nuclear localization. Our research highlights the critical roles of TabHLH489 and TaNLP7-3A in modulating nitrate signaling, providing new gene targets for developing wheat varieties with enhanced nitrogen use efficiency.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat.\",\"authors\":\"Fan Yang, Xuepeng Li, Songyu Liu, Jinyang Lyu, Zixuan Ge, Ming-Yi Bai\",\"doi\":\"10.1111/jipb.13832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling. Overexpressing TabHLH489 significantly reduced nitrate-promoted wheat growth and grain yield. Transcriptomic analysis showed that approximately 75% of nitrate-responsive genes were no longerregulated by nitrate in the TabHLH489 overexpression lines. TabHLH489 directly interacts with TaNLP7-3A, the wheat homolog protein of NIN-like protein 7 (NLP7), a central transcription factor in nitrate signaling. This interaction impairs TaNLP7-3A's ability to bind DNA, thereby inhibiting its transcriptional activity. Moreover, TabHLH489 induces the accumulation of reactive oxygen species (ROS) to reduce the nuclear localization of TaNLP7-3A, thereby diminishing its effectiveness in regulating the plant nitrogen response. These findings highlight the intricate regulatory mechanism by which TabHLH489 modulates TaNLP7-3A activity through direct interaction and ROS-mediated inhibition of nuclear localization. Our research highlights the critical roles of TabHLH489 and TaNLP7-3A in modulating nitrate signaling, providing new gene targets for developing wheat varieties with enhanced nitrogen use efficiency.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jipb.13832\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13832","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硝酸盐不仅是陆生植物的主要氮源,也是调控植物生长发育的重要信号。了解植物对硝态氮有效性的反应对提高作物氮素利用效率至关重要。在此,我们证明了碱性螺旋-环-螺旋(bHLH)转录因子TabHLH489在小麦硝酸盐信号传导中起关键的负调控作用。过表达TabHLH489显著降低了硝酸盐促进的小麦生长和籽粒产量。转录组学分析显示,TabHLH489过表达系中约75%的硝酸盐应答基因不再受硝酸盐的调控。TabHLH489直接与硝酸信号中枢转录因子nin样蛋白7 (NLP7)的小麦同源蛋白TaNLP7-3A相互作用。这种相互作用削弱了TaNLP7-3A结合DNA的能力,从而抑制了其转录活性。此外,TabHLH489诱导活性氧(ROS)的积累,降低TaNLP7-3A的核定位,从而降低其调节植物氮应答的有效性。这些发现强调了TabHLH489通过直接相互作用和ros介导的核定位抑制来调节TaNLP7-3A活性的复杂调控机制。我们的研究突出了TabHLH489和TaNLP7-3A在调控硝酸盐信号传导中的关键作用,为培育提高氮素利用效率的小麦品种提供了新的基因靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat.

Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling. Overexpressing TabHLH489 significantly reduced nitrate-promoted wheat growth and grain yield. Transcriptomic analysis showed that approximately 75% of nitrate-responsive genes were no longerregulated by nitrate in the TabHLH489 overexpression lines. TabHLH489 directly interacts with TaNLP7-3A, the wheat homolog protein of NIN-like protein 7 (NLP7), a central transcription factor in nitrate signaling. This interaction impairs TaNLP7-3A's ability to bind DNA, thereby inhibiting its transcriptional activity. Moreover, TabHLH489 induces the accumulation of reactive oxygen species (ROS) to reduce the nuclear localization of TaNLP7-3A, thereby diminishing its effectiveness in regulating the plant nitrogen response. These findings highlight the intricate regulatory mechanism by which TabHLH489 modulates TaNLP7-3A activity through direct interaction and ROS-mediated inhibition of nuclear localization. Our research highlights the critical roles of TabHLH489 and TaNLP7-3A in modulating nitrate signaling, providing new gene targets for developing wheat varieties with enhanced nitrogen use efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信