基于壳聚糖纳米颗粒的姜黄素和木瓜蛋白酶在伤口敷料中的效果比较。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-28 DOI:10.1007/s13205-024-04193-2
Niloufar Elhami, Mohammad Pazhang, Younes Beygi-Khosrowshahi, Amir Dehghani
{"title":"基于壳聚糖纳米颗粒的姜黄素和木瓜蛋白酶在伤口敷料中的效果比较。","authors":"Niloufar Elhami, Mohammad Pazhang, Younes Beygi-Khosrowshahi, Amir Dehghani","doi":"10.1007/s13205-024-04193-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, chitosan/curcumin (CS/Cur) and chitosan/papain (CS/Pa) nanoparticles were prepared and then characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential light scattering (DLS). Subsequently, release rate, porosity, swelling, degradability, anti-inflammatory, antioxidant, antibacterial, and cell viability tests were conducted to investigate and compare the healing potential of the nanoparticles for various types of wounds. The results of FTIR, XRD, and DLS indicated that the nanoparticles were manufactured correctly with a hydrodynamic diameter of 429 nm (CS/Cur) and 460 nm (CS/Pa), and zeta potential of 4.32 mV (CS/Cur) and 7.57 mV (CS/Pa). The release rate results indicated a higher release rate in a basic environment (pH 8.4) for curcumin, a higher release rate for papain in an acidic environment (pH 6.4), and the Korsmeyer-Peppas model for the release of curcumin and papain. The results indicated that CS/Cur with 41.6% antioxidant activity, high antibacterial effect, and cell growth up to 616% during 7 days, was more effective than CS/Pa. In comparison, CS/Pa (with a porosity of 70.5% and a swelling rate of 1392%) was more advantageous than CS/Cur in terms of porosity and swelling. In addition, CS/Cur was as effective as CS/Pa in terms of degradation and anti-inflammatory properties. In conclusion, the outcomes represented that the CS/Cur and CS/Pa nanoparticles improved wound healing, and each was suitable for specific wounds and wound healing stages.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"27"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682025/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparing the effectiveness of curcumin and papain in wound dresses based on chitosan nanoparticle.\",\"authors\":\"Niloufar Elhami, Mohammad Pazhang, Younes Beygi-Khosrowshahi, Amir Dehghani\",\"doi\":\"10.1007/s13205-024-04193-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, chitosan/curcumin (CS/Cur) and chitosan/papain (CS/Pa) nanoparticles were prepared and then characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential light scattering (DLS). Subsequently, release rate, porosity, swelling, degradability, anti-inflammatory, antioxidant, antibacterial, and cell viability tests were conducted to investigate and compare the healing potential of the nanoparticles for various types of wounds. The results of FTIR, XRD, and DLS indicated that the nanoparticles were manufactured correctly with a hydrodynamic diameter of 429 nm (CS/Cur) and 460 nm (CS/Pa), and zeta potential of 4.32 mV (CS/Cur) and 7.57 mV (CS/Pa). The release rate results indicated a higher release rate in a basic environment (pH 8.4) for curcumin, a higher release rate for papain in an acidic environment (pH 6.4), and the Korsmeyer-Peppas model for the release of curcumin and papain. The results indicated that CS/Cur with 41.6% antioxidant activity, high antibacterial effect, and cell growth up to 616% during 7 days, was more effective than CS/Pa. In comparison, CS/Pa (with a porosity of 70.5% and a swelling rate of 1392%) was more advantageous than CS/Cur in terms of porosity and swelling. In addition, CS/Cur was as effective as CS/Pa in terms of degradation and anti-inflammatory properties. In conclusion, the outcomes represented that the CS/Cur and CS/Pa nanoparticles improved wound healing, and each was suitable for specific wounds and wound healing stages.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 1\",\"pages\":\"27\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682025/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04193-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04193-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究制备了壳聚糖/姜黄素(CS/Cur)和壳聚糖/木瓜蛋白酶(CS/Pa)纳米颗粒,并用傅里叶变换红外(FTIR)、x射线衍射(XRD)和微分光散射(DLS)对其进行了表征。随后,进行了释放率、孔隙度、溶胀性、可降解性、抗炎、抗氧化、抗菌和细胞活力测试,以研究和比较纳米颗粒对不同类型伤口的愈合潜力。FTIR、XRD和DLS分析结果表明,制备的纳米颗粒的水动力直径分别为429 nm (CS/Cur)和460 nm (CS/Pa), zeta电位分别为4.32 mV (CS/Cur)和7.57 mV (CS/Pa)。结果表明,姜黄素在碱性环境(pH 8.4)下的释放率较高,木瓜蛋白酶在酸性环境(pH 6.4)下的释放率较高,且姜黄素和木瓜蛋白酶的释放符合korsmemeyer - peppas模型。结果表明,CS/Cur具有41.6%的抗氧化活性和较高的抑菌效果,7 d内细胞生长可达616%,优于CS/Pa。相比之下,CS/Pa的孔隙度为70.5%,溶胀率为1392%,其孔隙度和溶胀率均优于CS/Cur。此外,CS/Cur在降解和抗炎性能方面与CS/Pa一样有效。综上所述,CS/Cur和CS/Pa纳米颗粒均可促进创面愈合,且各自适用于特定创面和创面愈合阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing the effectiveness of curcumin and papain in wound dresses based on chitosan nanoparticle.

In this study, chitosan/curcumin (CS/Cur) and chitosan/papain (CS/Pa) nanoparticles were prepared and then characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential light scattering (DLS). Subsequently, release rate, porosity, swelling, degradability, anti-inflammatory, antioxidant, antibacterial, and cell viability tests were conducted to investigate and compare the healing potential of the nanoparticles for various types of wounds. The results of FTIR, XRD, and DLS indicated that the nanoparticles were manufactured correctly with a hydrodynamic diameter of 429 nm (CS/Cur) and 460 nm (CS/Pa), and zeta potential of 4.32 mV (CS/Cur) and 7.57 mV (CS/Pa). The release rate results indicated a higher release rate in a basic environment (pH 8.4) for curcumin, a higher release rate for papain in an acidic environment (pH 6.4), and the Korsmeyer-Peppas model for the release of curcumin and papain. The results indicated that CS/Cur with 41.6% antioxidant activity, high antibacterial effect, and cell growth up to 616% during 7 days, was more effective than CS/Pa. In comparison, CS/Pa (with a porosity of 70.5% and a swelling rate of 1392%) was more advantageous than CS/Cur in terms of porosity and swelling. In addition, CS/Cur was as effective as CS/Pa in terms of degradation and anti-inflammatory properties. In conclusion, the outcomes represented that the CS/Cur and CS/Pa nanoparticles improved wound healing, and each was suitable for specific wounds and wound healing stages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信