微泡尺寸和浓度测量中改进的校准方法和不确定度评定

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
R. Stigter, D. Fiscaletti, G. E. Elsinga, T. van Terwisga, J. Westerweel
{"title":"微泡尺寸和浓度测量中改进的校准方法和不确定度评定","authors":"R. Stigter,&nbsp;D. Fiscaletti,&nbsp;G. E. Elsinga,&nbsp;T. van Terwisga,&nbsp;J. Westerweel","doi":"10.1007/s00348-024-03929-3","DOIUrl":null,"url":null,"abstract":"<div><p>Interferometric particle imaging (IPI) is used to measure both the size distribution and concentration of microbubbles (with a diameter less than 100 micron) in water. Using a new method for calibration makes it possible to obtain quantitative results for the concentration of microbubbles. The results are validated using imaging with a long-range microscope shadowgraph (LMS). Estimates of the size distribution and concentration from both IPI and LMS agree within uncertainty limits. The relative uncertainty in the IPI concentration estimation is about 10% and is mostly due to the finite number of detected bubbles. It is shown that the performance of the bubble-image detection algorithm needs to be quantified to obtain a reliable estimate of the concentration obtained with IPI.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03929-3.pdf","citationCount":"0","resultStr":"{\"title\":\"An improved calibration methodology and uncertainty assessment in measurements of microbubble size and concentration\",\"authors\":\"R. Stigter,&nbsp;D. Fiscaletti,&nbsp;G. E. Elsinga,&nbsp;T. van Terwisga,&nbsp;J. Westerweel\",\"doi\":\"10.1007/s00348-024-03929-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interferometric particle imaging (IPI) is used to measure both the size distribution and concentration of microbubbles (with a diameter less than 100 micron) in water. Using a new method for calibration makes it possible to obtain quantitative results for the concentration of microbubbles. The results are validated using imaging with a long-range microscope shadowgraph (LMS). Estimates of the size distribution and concentration from both IPI and LMS agree within uncertainty limits. The relative uncertainty in the IPI concentration estimation is about 10% and is mostly due to the finite number of detected bubbles. It is shown that the performance of the bubble-image detection algorithm needs to be quantified to obtain a reliable estimate of the concentration obtained with IPI.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-024-03929-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03929-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03929-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

干涉粒子成像(IPI)用于测量水中微泡(直径小于100微米)的大小分布和浓度。采用一种新的校准方法,可以获得微泡浓度的定量结果。使用远程显微镜影图(LMS)成像验证了结果。IPI和LMS估算的大小分布和浓度在不确定范围内是一致的。IPI浓度估计的相对不确定性约为10%,主要是由于检测到的气泡数量有限。结果表明,气泡图像检测算法的性能需要量化,以获得可靠的IPI浓度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved calibration methodology and uncertainty assessment in measurements of microbubble size and concentration

Interferometric particle imaging (IPI) is used to measure both the size distribution and concentration of microbubbles (with a diameter less than 100 micron) in water. Using a new method for calibration makes it possible to obtain quantitative results for the concentration of microbubbles. The results are validated using imaging with a long-range microscope shadowgraph (LMS). Estimates of the size distribution and concentration from both IPI and LMS agree within uncertainty limits. The relative uncertainty in the IPI concentration estimation is about 10% and is mostly due to the finite number of detected bubbles. It is shown that the performance of the bubble-image detection algorithm needs to be quantified to obtain a reliable estimate of the concentration obtained with IPI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信