磁性碳球富集法检测废水中SARS-CoV-2

IF 4.1 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES
Made Sandhyana Angga, Sunayana Raya, Soichiro Hirai, Eiji Haramoto
{"title":"磁性碳球富集法检测废水中SARS-CoV-2","authors":"Made Sandhyana Angga,&nbsp;Sunayana Raya,&nbsp;Soichiro Hirai,&nbsp;Eiji Haramoto","doi":"10.1007/s12560-024-09623-1","DOIUrl":null,"url":null,"abstract":"<div><p>Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e., the Carbon Prep (C.prep) method (Life Magnetics), was employed to detect and quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bacteriophage Phi6 and pepper mild mottle virus (PMMoV) in wastewater samples. The performance of this method was evaluated by modifying several steps and comparing it with the polyethylene glycol (PEG) precipitation method to demonstrate its applicability to virus detection in wastewater. The protocol of the C.prep method, based on the manufacturer’s instructions, could not detect SARS-CoV-2 RNA, while the optimized protocol could detect it in the tested samples at concentrations that were not significantly different from those obtained using the PEG precipitation method. However, the optimized C.prep method performed more poorly in recovering Phi6 and detecting PMMoV than the PEG precipitation method. The results of this study indicated that the full workflow of the C.prep method was not sufficient to detect the target viruses in wastewater and that an additional RNA extraction step was needed to increase its detection sensitivity.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"17 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater\",\"authors\":\"Made Sandhyana Angga,&nbsp;Sunayana Raya,&nbsp;Soichiro Hirai,&nbsp;Eiji Haramoto\",\"doi\":\"10.1007/s12560-024-09623-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e., the Carbon Prep (C.prep) method (Life Magnetics), was employed to detect and quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bacteriophage Phi6 and pepper mild mottle virus (PMMoV) in wastewater samples. The performance of this method was evaluated by modifying several steps and comparing it with the polyethylene glycol (PEG) precipitation method to demonstrate its applicability to virus detection in wastewater. The protocol of the C.prep method, based on the manufacturer’s instructions, could not detect SARS-CoV-2 RNA, while the optimized protocol could detect it in the tested samples at concentrations that were not significantly different from those obtained using the PEG precipitation method. However, the optimized C.prep method performed more poorly in recovering Phi6 and detecting PMMoV than the PEG precipitation method. The results of this study indicated that the full workflow of the C.prep method was not sufficient to detect the target viruses in wastewater and that an additional RNA extraction step was needed to increase its detection sensitivity.</p></div>\",\"PeriodicalId\":563,\"journal\":{\"name\":\"Food and Environmental Virology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Environmental Virology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12560-024-09623-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-024-09623-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

废水病原体监测对于监测社区内的疾病趋势和维护公共卫生至关重要;因此,需要一种快速可靠的方案来量化废水中存在的病原体。本研究采用市上可买到的磁性碳球基试剂盒,即carbon Prep (C.prep)法(Life Magnetics),对废水样品中的严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)、噬菌体Phi6和辣椒轻度斑驳病毒(PMMoV)进行检测和定量。对该方法进行了改进,并与聚乙二醇(PEG)沉淀法进行了比较,验证了该方法对废水中病毒检测的适用性。根据制造商的说明,C.prep方法的方案无法检测到SARS-CoV-2 RNA,而优化后的方案可以在测试样品中检测到SARS-CoV-2 RNA,其浓度与PEG沉淀法获得的浓度没有显著差异。然而,优化后的C.prep法在回收Phi6和检测PMMoV方面的性能较PEG沉淀法差。本研究结果表明,C.prep方法的完整工作流程不足以检测废水中的目标病毒,需要额外的RNA提取步骤来提高其检测灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater

Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e., the Carbon Prep (C.prep) method (Life Magnetics), was employed to detect and quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bacteriophage Phi6 and pepper mild mottle virus (PMMoV) in wastewater samples. The performance of this method was evaluated by modifying several steps and comparing it with the polyethylene glycol (PEG) precipitation method to demonstrate its applicability to virus detection in wastewater. The protocol of the C.prep method, based on the manufacturer’s instructions, could not detect SARS-CoV-2 RNA, while the optimized protocol could detect it in the tested samples at concentrations that were not significantly different from those obtained using the PEG precipitation method. However, the optimized C.prep method performed more poorly in recovering Phi6 and detecting PMMoV than the PEG precipitation method. The results of this study indicated that the full workflow of the C.prep method was not sufficient to detect the target viruses in wastewater and that an additional RNA extraction step was needed to increase its detection sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Environmental Virology
Food and Environmental Virology ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.50
自引率
2.90%
发文量
35
审稿时长
1 months
期刊介绍: Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信