基于压电驱动分布式Bragg反射镜的可见光高光谱成像可调谐fabry - psamro滤波器

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Pratyasha Sahani;Yoshiaki Kanamori
{"title":"基于压电驱动分布式Bragg反射镜的可见光高光谱成像可调谐fabry - psamro滤波器","authors":"Pratyasha Sahani;Yoshiaki Kanamori","doi":"10.1109/JPHOT.2024.3515468","DOIUrl":null,"url":null,"abstract":"A tunable air-gap Fabry–Pérot filter consisting of distributed Bragg reflectors as cavity mirrors was developed to operate in the visible wavelength range. The wavelength tunability of the filter was achieved based on the piezo actuation mechanism. Four in-plane identical piezo actuators were employed to simultaneously achieve both wavelength tunability and cavity air-gap parallelism in the filter. Two pairs of piezo actuators positioned at crossed locations enabled independent control of cavity air-gap dimensions along orthogonal directions in the cavity plane. Optical transmission measurements were performed at different spatial positions on the cavity region to estimate the cavity air-gap dimensions. The initial maximum spectral separation among different spatial positions owing to the initial non-parallelism of the cavity air gap was estimated to be ∼28 nm. After achieving cavity air-gap parallelism via piezo actuation, the final maximum spectral separation was reduced to ∼3 nm. The proposed device configuration significantly improved the cavity air-gap parallelism by minimizing the maximum variation of the cavity air-gap dimension from an initial value of 535 nm to a final value of 18 nm, resulting in an improvement by a factor of ∼30. This device prototype can enable high-resolution and high-throughput spectral transmission with improved spatial uniformity across a large cavity area, showing great promise for advancing hyperspectral imaging systems.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-10"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10791869","citationCount":"0","resultStr":"{\"title\":\"Piezo-Actuated Distributed Bragg Reflector–Based Tunable Fabry–Pérot Filter for Visible Light Hyperspectral Imaging\",\"authors\":\"Pratyasha Sahani;Yoshiaki Kanamori\",\"doi\":\"10.1109/JPHOT.2024.3515468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tunable air-gap Fabry–Pérot filter consisting of distributed Bragg reflectors as cavity mirrors was developed to operate in the visible wavelength range. The wavelength tunability of the filter was achieved based on the piezo actuation mechanism. Four in-plane identical piezo actuators were employed to simultaneously achieve both wavelength tunability and cavity air-gap parallelism in the filter. Two pairs of piezo actuators positioned at crossed locations enabled independent control of cavity air-gap dimensions along orthogonal directions in the cavity plane. Optical transmission measurements were performed at different spatial positions on the cavity region to estimate the cavity air-gap dimensions. The initial maximum spectral separation among different spatial positions owing to the initial non-parallelism of the cavity air gap was estimated to be ∼28 nm. After achieving cavity air-gap parallelism via piezo actuation, the final maximum spectral separation was reduced to ∼3 nm. The proposed device configuration significantly improved the cavity air-gap parallelism by minimizing the maximum variation of the cavity air-gap dimension from an initial value of 535 nm to a final value of 18 nm, resulting in an improvement by a factor of ∼30. This device prototype can enable high-resolution and high-throughput spectral transmission with improved spatial uniformity across a large cavity area, showing great promise for advancing hyperspectral imaging systems.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10791869\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10791869/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10791869/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研制了一种可调气隙法布里-帕氏滤波器,该滤波器由分布布拉格反射镜作为腔镜组成,工作在可见波长范围内。利用压电驱动机制实现了滤波器的波长可调性。采用四个平面内相同的压电致动器同时实现了滤波器的波长可调性和腔隙平行性。放置在交叉位置的两对压电致动器可以在腔平面上沿正交方向独立控制腔隙尺寸。在空腔区域的不同空间位置进行光传输测量,以估计空腔气隙尺寸。由于空腔气隙的初始非平行性,不同空间位置之间的初始最大光谱分离估计为~ 28 nm。在通过压电驱动实现腔气隙平行后,最终最大光谱分离减少到~ 3nm。所提出的器件配置通过将腔气隙尺寸的最大变化从初始值535 nm减小到最终值18 nm,从而显着改善了腔气隙平行度,从而提高了约30倍。该器件原型可以实现高分辨率和高通量光谱传输,并改善了大腔区的空间均匀性,为推进高光谱成像系统展示了巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piezo-Actuated Distributed Bragg Reflector–Based Tunable Fabry–Pérot Filter for Visible Light Hyperspectral Imaging
A tunable air-gap Fabry–Pérot filter consisting of distributed Bragg reflectors as cavity mirrors was developed to operate in the visible wavelength range. The wavelength tunability of the filter was achieved based on the piezo actuation mechanism. Four in-plane identical piezo actuators were employed to simultaneously achieve both wavelength tunability and cavity air-gap parallelism in the filter. Two pairs of piezo actuators positioned at crossed locations enabled independent control of cavity air-gap dimensions along orthogonal directions in the cavity plane. Optical transmission measurements were performed at different spatial positions on the cavity region to estimate the cavity air-gap dimensions. The initial maximum spectral separation among different spatial positions owing to the initial non-parallelism of the cavity air gap was estimated to be ∼28 nm. After achieving cavity air-gap parallelism via piezo actuation, the final maximum spectral separation was reduced to ∼3 nm. The proposed device configuration significantly improved the cavity air-gap parallelism by minimizing the maximum variation of the cavity air-gap dimension from an initial value of 535 nm to a final value of 18 nm, resulting in an improvement by a factor of ∼30. This device prototype can enable high-resolution and high-throughput spectral transmission with improved spatial uniformity across a large cavity area, showing great promise for advancing hyperspectral imaging systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信