人体运动分析合成雷达信号发生器

Evert I. Pocoma Copa;Hasan Can Yildirim;Jean-François Determe;François Horlin
{"title":"人体运动分析合成雷达信号发生器","authors":"Evert I. Pocoma Copa;Hasan Can Yildirim;Jean-François Determe;François Horlin","doi":"10.1109/TRS.2024.3519138","DOIUrl":null,"url":null,"abstract":"Synthetic generation of radar signals is an attractive solution to alleviate the lack of standardized datasets containing paired radar and human-motion data. Unfortunately, current approaches in the literature, such as SimHumalator, fail to closely resemble real measurements and thus cannot be used alone in data-driven applications that rely on large training sets. Consequently, we propose an empirical signal model that considers the human body as an ensemble of extended targets. Unlike SimHumalator, which uses a single-point scatterer, our approach locates a multiple-point scatterer on each body part. Our method does not rely on 3-D-meshes but leverages primitive shapes fit to each body part, thereby making it possible to take advantage of publicly available motion-capture (MoCap) datasets. By carefully selecting the parameters of the proposed empirical model, we can generate Doppler-time spectrograms (DTSs) that better resemble real measurements, thus reducing the gap between synthetic and real data. Finally, we show the applicability of our approach in two different application use cases that leverage artificial neural networks (ANNs) to address activity classification and skeleton-joint velocity estimation.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"88-100"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Radar Signal Generator for Human Motion Analysis\",\"authors\":\"Evert I. Pocoma Copa;Hasan Can Yildirim;Jean-François Determe;François Horlin\",\"doi\":\"10.1109/TRS.2024.3519138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic generation of radar signals is an attractive solution to alleviate the lack of standardized datasets containing paired radar and human-motion data. Unfortunately, current approaches in the literature, such as SimHumalator, fail to closely resemble real measurements and thus cannot be used alone in data-driven applications that rely on large training sets. Consequently, we propose an empirical signal model that considers the human body as an ensemble of extended targets. Unlike SimHumalator, which uses a single-point scatterer, our approach locates a multiple-point scatterer on each body part. Our method does not rely on 3-D-meshes but leverages primitive shapes fit to each body part, thereby making it possible to take advantage of publicly available motion-capture (MoCap) datasets. By carefully selecting the parameters of the proposed empirical model, we can generate Doppler-time spectrograms (DTSs) that better resemble real measurements, thus reducing the gap between synthetic and real data. Finally, we show the applicability of our approach in two different application use cases that leverage artificial neural networks (ANNs) to address activity classification and skeleton-joint velocity estimation.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"88-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804837/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804837/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雷达信号的合成生成是一种有吸引力的解决方案,可以缓解缺少包含成对雷达和人体运动数据的标准化数据集的问题。不幸的是,目前文献中的方法,如SimHumalator,不能非常接近真实的测量,因此不能单独用于依赖大型训练集的数据驱动应用程序。因此,我们提出了一个经验信号模型,将人体视为一个扩展目标的集合。与使用单点散射器的SimHumalator不同,我们的方法在每个身体部位定位多点散射器。我们的方法不依赖于三维网格,而是利用原始形状适合每个身体部位,从而可以利用公开可用的动作捕捉(MoCap)数据集。通过仔细选择所提出的经验模型的参数,我们可以生成更接近实际测量值的多普勒时间谱图(dts),从而缩小合成数据与实际数据之间的差距。最后,我们展示了我们的方法在两个不同的应用用例中的适用性,这些用例利用人工神经网络(ann)来解决活动分类和骨骼关节速度估计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Radar Signal Generator for Human Motion Analysis
Synthetic generation of radar signals is an attractive solution to alleviate the lack of standardized datasets containing paired radar and human-motion data. Unfortunately, current approaches in the literature, such as SimHumalator, fail to closely resemble real measurements and thus cannot be used alone in data-driven applications that rely on large training sets. Consequently, we propose an empirical signal model that considers the human body as an ensemble of extended targets. Unlike SimHumalator, which uses a single-point scatterer, our approach locates a multiple-point scatterer on each body part. Our method does not rely on 3-D-meshes but leverages primitive shapes fit to each body part, thereby making it possible to take advantage of publicly available motion-capture (MoCap) datasets. By carefully selecting the parameters of the proposed empirical model, we can generate Doppler-time spectrograms (DTSs) that better resemble real measurements, thus reducing the gap between synthetic and real data. Finally, we show the applicability of our approach in two different application use cases that leverage artificial neural networks (ANNs) to address activity classification and skeleton-joint velocity estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信