{"title":"抑制n-i-p钙钛矿太阳能电池中离子迁移的方法","authors":"Dongmei He;Yue Yu;Xinxing Liu;Xuxia Shai;Jiangzhao Chen","doi":"10.23919/IEN.2024.0029","DOIUrl":null,"url":null,"abstract":"In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs. In this review, the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive (n-i-p) PSCs are summarized. Additionally, methods of suppressing ion migration are systematically discussed. Finally, the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"242-251"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818562","citationCount":"0","resultStr":"{\"title\":\"Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells\",\"authors\":\"Dongmei He;Yue Yu;Xinxing Liu;Xuxia Shai;Jiangzhao Chen\",\"doi\":\"10.23919/IEN.2024.0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs. In this review, the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive (n-i-p) PSCs are summarized. Additionally, methods of suppressing ion migration are systematically discussed. Finally, the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"3 4\",\"pages\":\"242-251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818562\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818562/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818562/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells
In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs. In this review, the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive (n-i-p) PSCs are summarized. Additionally, methods of suppressing ion migration are systematically discussed. Finally, the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.