{"title":"生态共存理论预测气温上升下物种灭绝的实验验证","authors":"J. Christopher D. Terry","doi":"10.1111/ele.70047","DOIUrl":null,"url":null,"abstract":"<p>Interactions between species pose considerable challenges for forecasting the response of ecological communities to global changes. Coexistence theory could address this challenge by defining the conditions species can or cannot persist alongside competitors. However, although coexistence theory is increasingly deployed for projections, these frameworks have rarely been subjected to critical multigenerational validation tests. Here, using a highly replicated mesocosm experiment, I directly test if the modern coexistence theory approach can predict time-to-extirpation in the face of rising temperatures within the context of competition from a heat-tolerant species. Competition hastened expiration and the modelled point of coexistence breakdown overlapped with mean observations under both steady temperature increases and with additional environmental stochasticity. That said, although the theory identified the interactive effect between the stressors, predictive precision was low even in this simplified system. Nonetheless, these results support the careful use of coexistence modelling for forecasts and understanding drivers of change.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70047","citationCount":"0","resultStr":"{\"title\":\"An Experimental Validation Test of Ecological Coexistence Theory to Forecast Extinction Under Rising Temperatures\",\"authors\":\"J. Christopher D. Terry\",\"doi\":\"10.1111/ele.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interactions between species pose considerable challenges for forecasting the response of ecological communities to global changes. Coexistence theory could address this challenge by defining the conditions species can or cannot persist alongside competitors. However, although coexistence theory is increasingly deployed for projections, these frameworks have rarely been subjected to critical multigenerational validation tests. Here, using a highly replicated mesocosm experiment, I directly test if the modern coexistence theory approach can predict time-to-extirpation in the face of rising temperatures within the context of competition from a heat-tolerant species. Competition hastened expiration and the modelled point of coexistence breakdown overlapped with mean observations under both steady temperature increases and with additional environmental stochasticity. That said, although the theory identified the interactive effect between the stressors, predictive precision was low even in this simplified system. Nonetheless, these results support the careful use of coexistence modelling for forecasts and understanding drivers of change.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70047\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70047","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
An Experimental Validation Test of Ecological Coexistence Theory to Forecast Extinction Under Rising Temperatures
Interactions between species pose considerable challenges for forecasting the response of ecological communities to global changes. Coexistence theory could address this challenge by defining the conditions species can or cannot persist alongside competitors. However, although coexistence theory is increasingly deployed for projections, these frameworks have rarely been subjected to critical multigenerational validation tests. Here, using a highly replicated mesocosm experiment, I directly test if the modern coexistence theory approach can predict time-to-extirpation in the face of rising temperatures within the context of competition from a heat-tolerant species. Competition hastened expiration and the modelled point of coexistence breakdown overlapped with mean observations under both steady temperature increases and with additional environmental stochasticity. That said, although the theory identified the interactive effect between the stressors, predictive precision was low even in this simplified system. Nonetheless, these results support the careful use of coexistence modelling for forecasts and understanding drivers of change.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.