Mike Cruise, Matteo Guainazzi, James Aird, Francisco J. Carrera, Elisa Costantini, Lia Corrales, Thomas Dauser, Dominique Eckert, Fabio Gastaldello, Hironori Matsumoto, Rachel Osten, Pierre-Olivier Petrucci, Delphine Porquet, Gabriel W. Pratt, Nanda Rea, Thomas H. Reiprich, Aurora Simionescu, Daniele Spiga, Eleonora Troja
{"title":"在未来十年的x射线天文学背景下的新瓦瑟纳任务概念","authors":"Mike Cruise, Matteo Guainazzi, James Aird, Francisco J. Carrera, Elisa Costantini, Lia Corrales, Thomas Dauser, Dominique Eckert, Fabio Gastaldello, Hironori Matsumoto, Rachel Osten, Pierre-Olivier Petrucci, Delphine Porquet, Gabriel W. Pratt, Nanda Rea, Thomas H. Reiprich, Aurora Simionescu, Daniele Spiga, Eleonora Troja","doi":"10.1038/s41550-024-02416-3","DOIUrl":null,"url":null,"abstract":"Large X-ray observatories such as Chandra and XMM-Newton have been delivering scientific breakthroughs in research fields as diverse as our Solar System, the astrophysics of stars, stellar explosions and compact objects, accreting supermassive black holes, and large-scale structures traced by the hot plasma permeating and surrounding galaxy groups and clusters. The recently launched X-Ray Imaging and Spectroscopy Mission observatory is opening in earnest the new observational window of non-dispersive high-resolution spectroscopy. However, several questions remain open, such as the effect of the stellar radiation field on the habitability of nearby planets, the equation of state regulating matter in neutron stars, the origin and distribution of metals in the Universe, the processes driving the cosmological evolution of the baryons locked in the gravitational potential of dark matter and the impact of supermassive black hole growth on galaxy evolution, to mention just a few. Furthermore, X-ray astronomy has a key part to play in multimessenger astrophysics. Addressing these questions experimentally requires an order-of-magnitude leap in sensitivity, spectroscopy and survey capabilities with respect to existing X-ray observatories. This article succinctly summarizes the main areas where high-energy astrophysics is expected to contribute to our understanding of the Universe in the next decade and describes a new mission concept under study by the European Space Agency, the scientific community worldwide and two international partners (JAXA and NASA), designed to enable transformational discoveries: NewAthena. This concept inherits its basic payload design from a previous study carried out until 2022, Athena. This Perspective looks forwards to the next decade of X-ray astronomy, explaining how it will contribute to better understanding of the high-energy Universe. In this context, the authors describe the NewAthena mission, a concept led by the European Space Agency.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"9 1","pages":"36-44"},"PeriodicalIF":12.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The NewAthena mission concept in the context of the next decade of X-ray astronomy\",\"authors\":\"Mike Cruise, Matteo Guainazzi, James Aird, Francisco J. Carrera, Elisa Costantini, Lia Corrales, Thomas Dauser, Dominique Eckert, Fabio Gastaldello, Hironori Matsumoto, Rachel Osten, Pierre-Olivier Petrucci, Delphine Porquet, Gabriel W. Pratt, Nanda Rea, Thomas H. Reiprich, Aurora Simionescu, Daniele Spiga, Eleonora Troja\",\"doi\":\"10.1038/s41550-024-02416-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large X-ray observatories such as Chandra and XMM-Newton have been delivering scientific breakthroughs in research fields as diverse as our Solar System, the astrophysics of stars, stellar explosions and compact objects, accreting supermassive black holes, and large-scale structures traced by the hot plasma permeating and surrounding galaxy groups and clusters. The recently launched X-Ray Imaging and Spectroscopy Mission observatory is opening in earnest the new observational window of non-dispersive high-resolution spectroscopy. However, several questions remain open, such as the effect of the stellar radiation field on the habitability of nearby planets, the equation of state regulating matter in neutron stars, the origin and distribution of metals in the Universe, the processes driving the cosmological evolution of the baryons locked in the gravitational potential of dark matter and the impact of supermassive black hole growth on galaxy evolution, to mention just a few. Furthermore, X-ray astronomy has a key part to play in multimessenger astrophysics. Addressing these questions experimentally requires an order-of-magnitude leap in sensitivity, spectroscopy and survey capabilities with respect to existing X-ray observatories. This article succinctly summarizes the main areas where high-energy astrophysics is expected to contribute to our understanding of the Universe in the next decade and describes a new mission concept under study by the European Space Agency, the scientific community worldwide and two international partners (JAXA and NASA), designed to enable transformational discoveries: NewAthena. This concept inherits its basic payload design from a previous study carried out until 2022, Athena. This Perspective looks forwards to the next decade of X-ray astronomy, explaining how it will contribute to better understanding of the high-energy Universe. In this context, the authors describe the NewAthena mission, a concept led by the European Space Agency.\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"9 1\",\"pages\":\"36-44\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41550-024-02416-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02416-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The NewAthena mission concept in the context of the next decade of X-ray astronomy
Large X-ray observatories such as Chandra and XMM-Newton have been delivering scientific breakthroughs in research fields as diverse as our Solar System, the astrophysics of stars, stellar explosions and compact objects, accreting supermassive black holes, and large-scale structures traced by the hot plasma permeating and surrounding galaxy groups and clusters. The recently launched X-Ray Imaging and Spectroscopy Mission observatory is opening in earnest the new observational window of non-dispersive high-resolution spectroscopy. However, several questions remain open, such as the effect of the stellar radiation field on the habitability of nearby planets, the equation of state regulating matter in neutron stars, the origin and distribution of metals in the Universe, the processes driving the cosmological evolution of the baryons locked in the gravitational potential of dark matter and the impact of supermassive black hole growth on galaxy evolution, to mention just a few. Furthermore, X-ray astronomy has a key part to play in multimessenger astrophysics. Addressing these questions experimentally requires an order-of-magnitude leap in sensitivity, spectroscopy and survey capabilities with respect to existing X-ray observatories. This article succinctly summarizes the main areas where high-energy astrophysics is expected to contribute to our understanding of the Universe in the next decade and describes a new mission concept under study by the European Space Agency, the scientific community worldwide and two international partners (JAXA and NASA), designed to enable transformational discoveries: NewAthena. This concept inherits its basic payload design from a previous study carried out until 2022, Athena. This Perspective looks forwards to the next decade of X-ray astronomy, explaining how it will contribute to better understanding of the high-energy Universe. In this context, the authors describe the NewAthena mission, a concept led by the European Space Agency.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.