Ming-Wei Li, Jun-Qi Ren, Jing Geng, Hsin-Pou Huang, Wei-Chiang Hong
{"title":"基于 CNN-LSTM 和 Monte Carlo 方法的重力坝可靠性计算方法研究。","authors":"Ming-Wei Li, Jun-Qi Ren, Jing Geng, Hsin-Pou Huang, Wei-Chiang Hong","doi":"10.1080/0954898X.2024.2447281","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the calculation accuracy of the Monte Carlo (MC) method and reduce the calculation time. Firstly, CNN and LSTM deep learning networks are introduced for designing nonlinear dynamic systems simulating dam stress. Then, spatial feature mining and sequence information extraction of nonlinear data of dam stress are carried out respectively, and a combined prediction model of dam stress depth (DS-FEM-CNN-LSTM) is proposed. Secondly, to solve the problem of a long time and heavy workload for the MC method to calculate a single sample point, the DOE test method is used to design the sample points. The weight factor and the distance to the failure surface are used as screening criteria. The reliability calculation method of the gravity dam (DS-FEM-CNN-LSTM-MC) is established. Finally, numerical results show that the proposed DS-FEM-CNN-LSTM-MC method performs better than the existing methods in terms of computational time consumption and accuracy.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-30"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.\",\"authors\":\"Ming-Wei Li, Jun-Qi Ren, Jing Geng, Hsin-Pou Huang, Wei-Chiang Hong\",\"doi\":\"10.1080/0954898X.2024.2447281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To improve the calculation accuracy of the Monte Carlo (MC) method and reduce the calculation time. Firstly, CNN and LSTM deep learning networks are introduced for designing nonlinear dynamic systems simulating dam stress. Then, spatial feature mining and sequence information extraction of nonlinear data of dam stress are carried out respectively, and a combined prediction model of dam stress depth (DS-FEM-CNN-LSTM) is proposed. Secondly, to solve the problem of a long time and heavy workload for the MC method to calculate a single sample point, the DOE test method is used to design the sample points. The weight factor and the distance to the failure surface are used as screening criteria. The reliability calculation method of the gravity dam (DS-FEM-CNN-LSTM-MC) is established. Finally, numerical results show that the proposed DS-FEM-CNN-LSTM-MC method performs better than the existing methods in terms of computational time consumption and accuracy.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-30\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2447281\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2447281","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.
To improve the calculation accuracy of the Monte Carlo (MC) method and reduce the calculation time. Firstly, CNN and LSTM deep learning networks are introduced for designing nonlinear dynamic systems simulating dam stress. Then, spatial feature mining and sequence information extraction of nonlinear data of dam stress are carried out respectively, and a combined prediction model of dam stress depth (DS-FEM-CNN-LSTM) is proposed. Secondly, to solve the problem of a long time and heavy workload for the MC method to calculate a single sample point, the DOE test method is used to design the sample points. The weight factor and the distance to the failure surface are used as screening criteria. The reliability calculation method of the gravity dam (DS-FEM-CNN-LSTM-MC) is established. Finally, numerical results show that the proposed DS-FEM-CNN-LSTM-MC method performs better than the existing methods in terms of computational time consumption and accuracy.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.