多模态成像揭示纳米层对细胞代谢活动的影响

Chemical & Biomedical Imaging Pub Date : 2024-11-18 eCollection Date: 2024-12-23 DOI:10.1021/cbmi.4c00051
Zhi Li, Einollah Sarikhani, Sirasit Prayotamornkul, Dhivya Pushpa Meganathan, Zeinab Jahed, Lingyan Shi
{"title":"多模态成像揭示纳米层对细胞代谢活动的影响","authors":"Zhi Li, Einollah Sarikhani, Sirasit Prayotamornkul, Dhivya Pushpa Meganathan, Zeinab Jahed, Lingyan Shi","doi":"10.1021/cbmi.4c00051","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 12","pages":"825-834"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672213/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities.\",\"authors\":\"Zhi Li, Einollah Sarikhani, Sirasit Prayotamornkul, Dhivya Pushpa Meganathan, Zeinab Jahed, Lingyan Shi\",\"doi\":\"10.1021/cbmi.4c00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 12\",\"pages\":\"825-834\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/cbmi.4c00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.4c00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米级表面形貌是调节细胞-物质相互作用的有效方法,显著影响细胞和核的形态及其功能。然而,纳米形貌的力学和几何微环境诱导的细胞代谢的适应性变化仍然知之甚少。在这项研究中,我们使用无标记的多模态光学成像平台研究了在工程纳米柱基质上培养的细胞的代谢活动。这个多模态成像平台,集成了双光子荧光(TPF)和受激拉曼散射(SRS)显微镜,使我们能够在亚细胞尺度上直接可视化和量化细胞的三维代谢活动。我们发现,与平面相比,纳米柱结构显著减少了细胞的扩散面积和圆度。纳米柱诱导的机械线索显著调节细胞代谢活动,纳米柱几何形状的变化进一步影响这些代谢过程。与在平面基质上培养的细胞相比,在纳米柱上培养的细胞表现出氧化应激降低、蛋白质和脂质合成减少以及脂质不饱和度降低。分层聚类还显示,纳米柱的间距差异比直径变化对细胞代谢活性的影响更显著。这些见解提高了我们对工程纳米形貌如何用于控制细胞代谢的理解,为设计先进的细胞培养平台提供了可能性,这些平台可以调节细胞行为,模拟自然细胞环境并优化基于细胞的应用。通过利用纳米柱阵列独特的代谢作用,人们可以开发更有效的策略来指导细胞的命运,提高细胞治疗的性能,并创造再生医学的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities.

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信