Jeongho Yang, Seong Je Park, Sang Hoon Kim, Si Mo Yeon, Kyung Il Kim, Yong Son, Parviz Kahhal, Jiyong Park, Sang-Hu Park
{"title":"有效的螺旋激光路径减少了粉末床熔融增材制造中的局部加热和各向异性微结构。","authors":"Jeongho Yang, Seong Je Park, Sang Hoon Kim, Si Mo Yeon, Kyung Il Kim, Yong Son, Parviz Kahhal, Jiyong Park, Sang-Hu Park","doi":"10.1089/3dp.2023.0065","DOIUrl":null,"url":null,"abstract":"<p><p>Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process. In this work, a novel spiral laser path with optimal rotation angle is proposed and compared with the commonly used scanning paths. As the results, the accumulated temperature of the optimal spiral path shows a 200.9 K less compared with that of the general repetitive path. The thermal deformation of a cantilever structure made by the optimal spiral path is experimentally evaluated. From the experimental test, we verify that the spiral laser path reduces thermal deformation by 52.3% compared with the one made by the general one-directional laser path. This work based on numerical simulations and experiments utilizes the proposed spiral laser path to obtain higher precision, less residual stress, and more uniform microstructure of an additive-manufactured structure.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 6","pages":"e2033-e2044"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669831/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effective Spiral Laser Path for Minimizing Local Heating and Anisotropic Microstructures in Powder Bed Fusion Additive Manufacturing.\",\"authors\":\"Jeongho Yang, Seong Je Park, Sang Hoon Kim, Si Mo Yeon, Kyung Il Kim, Yong Son, Parviz Kahhal, Jiyong Park, Sang-Hu Park\",\"doi\":\"10.1089/3dp.2023.0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process. In this work, a novel spiral laser path with optimal rotation angle is proposed and compared with the commonly used scanning paths. As the results, the accumulated temperature of the optimal spiral path shows a 200.9 K less compared with that of the general repetitive path. The thermal deformation of a cantilever structure made by the optimal spiral path is experimentally evaluated. From the experimental test, we verify that the spiral laser path reduces thermal deformation by 52.3% compared with the one made by the general one-directional laser path. This work based on numerical simulations and experiments utilizes the proposed spiral laser path to obtain higher precision, less residual stress, and more uniform microstructure of an additive-manufactured structure.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"11 6\",\"pages\":\"e2033-e2044\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669831/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2023.0065\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0065","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Effective Spiral Laser Path for Minimizing Local Heating and Anisotropic Microstructures in Powder Bed Fusion Additive Manufacturing.
Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process. In this work, a novel spiral laser path with optimal rotation angle is proposed and compared with the commonly used scanning paths. As the results, the accumulated temperature of the optimal spiral path shows a 200.9 K less compared with that of the general repetitive path. The thermal deformation of a cantilever structure made by the optimal spiral path is experimentally evaluated. From the experimental test, we verify that the spiral laser path reduces thermal deformation by 52.3% compared with the one made by the general one-directional laser path. This work based on numerical simulations and experiments utilizes the proposed spiral laser path to obtain higher precision, less residual stress, and more uniform microstructure of an additive-manufactured structure.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.