Jelmer Raaijmakers, Mike M Ruth, Jodie A Schildkraut, Erik van den Hombergh, Rob E Aarnoutse, Elin M Svensson, Heiman F L Wertheim, Wouter Hoefsloot, Jakko van Ingen
{"title":"用米诺环素代替利福平增加了动态中空纤维系统中鸟分枝杆菌复杂肺部疾病治疗方案的活性。","authors":"Jelmer Raaijmakers, Mike M Ruth, Jodie A Schildkraut, Erik van den Hombergh, Rob E Aarnoutse, Elin M Svensson, Heiman F L Wertheim, Wouter Hoefsloot, Jakko van Ingen","doi":"10.1016/j.ijantimicag.2024.107423","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Mycobacterium avium complex bacteria cause chronic pulmonary disease (MAC-PD) in susceptible patients. The recommended treatment regimen (rifampicin, ethambutol and azithromycin) achieves 65% cure rates but with considerable toxicity and drug-drug interactions [2,3]. Minocycline proved active in monotherapy experiments using the hollow-fibre model [4]. We compared the efficacy of the recommended regimen with a minocycline, ethambutol and azithromycin regimen using this model.</p><p><strong>Methods: </strong>Epithelial lining fluid pharmacokinetic (PK) profiles of the recommended regimen and minocycline, ethambutol, azithromycin regimen were simulated. THP-1 cells infected with M. avium ATCC 700898 were exposed to these regimens for 21 d. PK profiles were determined at d 0 and d 21. The pharmacodynamic effect was measured by determining bacterial densities at d 0, 3, 7, 14 and 21 for intra- and extracellular fractions. Emergence of macrolide-resistance was monitored by inoculating azithromycin-containing agar, MIC measurements and resistance mutation analysis.</p><p><strong>Results: </strong>The minocycline-containing regimen exhibited a 1.5 log10 CFU/mL lower bacterial burden than the recommended regimen at d 7, though both regimens lost effectiveness over time. Treatment failure in both arms was not linked to the emergence macrolide-resistance. PK profiles simulated in the model matched those in MAC-PD patients.</p><p><strong>Conclusions: </strong>Replacing rifampicin with minocycline increased the antimycobacterial activity of the MAC-PD treatment regimen in the hollow-fibre model, without jeopardizing the prevention of macrolide-resistance. This promising minocycline-containing regimen is a candidate for inclusion in clinical trials.</p>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":" ","pages":"107423"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Replacing rifampicin with minocycline increases the activity of the treatment regimen for Mycobacterium avium complex pulmonary disease in a dynamic hollow-fibre system.\",\"authors\":\"Jelmer Raaijmakers, Mike M Ruth, Jodie A Schildkraut, Erik van den Hombergh, Rob E Aarnoutse, Elin M Svensson, Heiman F L Wertheim, Wouter Hoefsloot, Jakko van Ingen\",\"doi\":\"10.1016/j.ijantimicag.2024.107423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Mycobacterium avium complex bacteria cause chronic pulmonary disease (MAC-PD) in susceptible patients. The recommended treatment regimen (rifampicin, ethambutol and azithromycin) achieves 65% cure rates but with considerable toxicity and drug-drug interactions [2,3]. Minocycline proved active in monotherapy experiments using the hollow-fibre model [4]. We compared the efficacy of the recommended regimen with a minocycline, ethambutol and azithromycin regimen using this model.</p><p><strong>Methods: </strong>Epithelial lining fluid pharmacokinetic (PK) profiles of the recommended regimen and minocycline, ethambutol, azithromycin regimen were simulated. THP-1 cells infected with M. avium ATCC 700898 were exposed to these regimens for 21 d. PK profiles were determined at d 0 and d 21. The pharmacodynamic effect was measured by determining bacterial densities at d 0, 3, 7, 14 and 21 for intra- and extracellular fractions. Emergence of macrolide-resistance was monitored by inoculating azithromycin-containing agar, MIC measurements and resistance mutation analysis.</p><p><strong>Results: </strong>The minocycline-containing regimen exhibited a 1.5 log10 CFU/mL lower bacterial burden than the recommended regimen at d 7, though both regimens lost effectiveness over time. Treatment failure in both arms was not linked to the emergence macrolide-resistance. PK profiles simulated in the model matched those in MAC-PD patients.</p><p><strong>Conclusions: </strong>Replacing rifampicin with minocycline increased the antimycobacterial activity of the MAC-PD treatment regimen in the hollow-fibre model, without jeopardizing the prevention of macrolide-resistance. This promising minocycline-containing regimen is a candidate for inclusion in clinical trials.</p>\",\"PeriodicalId\":13818,\"journal\":{\"name\":\"International Journal of Antimicrobial Agents\",\"volume\":\" \",\"pages\":\"107423\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antimicrobial Agents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijantimicag.2024.107423\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijantimicag.2024.107423","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Replacing rifampicin with minocycline increases the activity of the treatment regimen for Mycobacterium avium complex pulmonary disease in a dynamic hollow-fibre system.
Objective: Mycobacterium avium complex bacteria cause chronic pulmonary disease (MAC-PD) in susceptible patients. The recommended treatment regimen (rifampicin, ethambutol and azithromycin) achieves 65% cure rates but with considerable toxicity and drug-drug interactions [2,3]. Minocycline proved active in monotherapy experiments using the hollow-fibre model [4]. We compared the efficacy of the recommended regimen with a minocycline, ethambutol and azithromycin regimen using this model.
Methods: Epithelial lining fluid pharmacokinetic (PK) profiles of the recommended regimen and minocycline, ethambutol, azithromycin regimen were simulated. THP-1 cells infected with M. avium ATCC 700898 were exposed to these regimens for 21 d. PK profiles were determined at d 0 and d 21. The pharmacodynamic effect was measured by determining bacterial densities at d 0, 3, 7, 14 and 21 for intra- and extracellular fractions. Emergence of macrolide-resistance was monitored by inoculating azithromycin-containing agar, MIC measurements and resistance mutation analysis.
Results: The minocycline-containing regimen exhibited a 1.5 log10 CFU/mL lower bacterial burden than the recommended regimen at d 7, though both regimens lost effectiveness over time. Treatment failure in both arms was not linked to the emergence macrolide-resistance. PK profiles simulated in the model matched those in MAC-PD patients.
Conclusions: Replacing rifampicin with minocycline increased the antimycobacterial activity of the MAC-PD treatment regimen in the hollow-fibre model, without jeopardizing the prevention of macrolide-resistance. This promising minocycline-containing regimen is a candidate for inclusion in clinical trials.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.