Xiaoxiao Zhu, Wenjie Chang, Yu Kong, Ying Cai, Zhaoming Huang, Tianqi Wu, Miao Zhang, Huijun Nie, Yuan Wang
{"title":"低温对MBBR填料生物膜微生物群落的影响。","authors":"Xiaoxiao Zhu, Wenjie Chang, Yu Kong, Ying Cai, Zhaoming Huang, Tianqi Wu, Miao Zhang, Huijun Nie, Yuan Wang","doi":"10.2166/wst.2024.391","DOIUrl":null,"url":null,"abstract":"<p><p>Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature. <i>Proteobacteria</i>, <i>Bacteroidota</i>, and <i>Nitrospirota</i> were the dominant bacteria, accounting for 59.2, 11.9, and 9.4%, respectively. <i>Gammaproteobacteria</i> (38.3%), <i>Alphaproteobacteria</i> (23.2%), and <i>Bacteroidia</i> (12.4%) were the dominant bacteria at the class level. Low temperature had an obvious directional domestication effect on microbial flora, and the composition of the bacterial community was more similar. <i>Pseudomonas</i> was one of the dominant bacterial groups at 5 °C. <i>Nitrospira</i> (<i>p</i> < 0.001) and <i>Trichococcus</i> (<i>p</i> < 0.05) were significantly negatively correlated with effluent ammonia nitrogen and significantly positively correlated with NO<sub>3</sub><sup>-</sup> (<i>p</i> < 0.05) at low temperature. Functional bacteria related to chemoheterotrophy (25.88%) and aerobic_chemoheterotrophy (21.56%) accounted for a relatively high proportion. The bacteria related to nitrate reduction only accounted for 2.62%. Studies have shown that low temperatures can inhibit the growth of nitrogen-cycling bacteria, and few domesticated and selected nitrogen-cycling bacteria play a major role in the removal and transformation of ammonia nitrogen. The degradation of chemical oxygen demand can still be achieved through the adsorption and degradation of dominant functional bacteria.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 12","pages":"3166-3179"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of low temperature on the microbial community of MBBR filler biofilm.\",\"authors\":\"Xiaoxiao Zhu, Wenjie Chang, Yu Kong, Ying Cai, Zhaoming Huang, Tianqi Wu, Miao Zhang, Huijun Nie, Yuan Wang\",\"doi\":\"10.2166/wst.2024.391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature. <i>Proteobacteria</i>, <i>Bacteroidota</i>, and <i>Nitrospirota</i> were the dominant bacteria, accounting for 59.2, 11.9, and 9.4%, respectively. <i>Gammaproteobacteria</i> (38.3%), <i>Alphaproteobacteria</i> (23.2%), and <i>Bacteroidia</i> (12.4%) were the dominant bacteria at the class level. Low temperature had an obvious directional domestication effect on microbial flora, and the composition of the bacterial community was more similar. <i>Pseudomonas</i> was one of the dominant bacterial groups at 5 °C. <i>Nitrospira</i> (<i>p</i> < 0.001) and <i>Trichococcus</i> (<i>p</i> < 0.05) were significantly negatively correlated with effluent ammonia nitrogen and significantly positively correlated with NO<sub>3</sub><sup>-</sup> (<i>p</i> < 0.05) at low temperature. Functional bacteria related to chemoheterotrophy (25.88%) and aerobic_chemoheterotrophy (21.56%) accounted for a relatively high proportion. The bacteria related to nitrate reduction only accounted for 2.62%. Studies have shown that low temperatures can inhibit the growth of nitrogen-cycling bacteria, and few domesticated and selected nitrogen-cycling bacteria play a major role in the removal and transformation of ammonia nitrogen. The degradation of chemical oxygen demand can still be achieved through the adsorption and degradation of dominant functional bacteria.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"90 12\",\"pages\":\"3166-3179\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.391\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.391","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effects of low temperature on the microbial community of MBBR filler biofilm.
Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature. Proteobacteria, Bacteroidota, and Nitrospirota were the dominant bacteria, accounting for 59.2, 11.9, and 9.4%, respectively. Gammaproteobacteria (38.3%), Alphaproteobacteria (23.2%), and Bacteroidia (12.4%) were the dominant bacteria at the class level. Low temperature had an obvious directional domestication effect on microbial flora, and the composition of the bacterial community was more similar. Pseudomonas was one of the dominant bacterial groups at 5 °C. Nitrospira (p < 0.001) and Trichococcus (p < 0.05) were significantly negatively correlated with effluent ammonia nitrogen and significantly positively correlated with NO3- (p < 0.05) at low temperature. Functional bacteria related to chemoheterotrophy (25.88%) and aerobic_chemoheterotrophy (21.56%) accounted for a relatively high proportion. The bacteria related to nitrate reduction only accounted for 2.62%. Studies have shown that low temperatures can inhibit the growth of nitrogen-cycling bacteria, and few domesticated and selected nitrogen-cycling bacteria play a major role in the removal and transformation of ammonia nitrogen. The degradation of chemical oxygen demand can still be achieved through the adsorption and degradation of dominant functional bacteria.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.