{"title":"信使和信息:揭示细胞外囊泡在植物生物相互作用中的作用、节律和调控。","authors":"Serena Agnes Qiao, Ronelle Roth","doi":"10.1016/j.pbi.2024.102672","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are membrane-delimited nanoparticles found in every kingdom of life and are known to mediate cell-cell communication in animal systems through the trafficking of proteins and nucleic acids. Research into plant and microbial EVs suggests that these have similar transport capacity, and moreover are able to mediate signalling not only within an organism but also between organisms, acting between plants and their microbial partners in cross-kingdom signalling. Here, we review recent research exploring the roles of these EVs, both plant and microbial, highlighting emerging trends of functional conservation between species and across kingdoms, complemented by the heterogeneity of EV subpopulations at the organism level that places EVs as powerful regulatory mechanisms in plant biotic interactions.</p>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"83 ","pages":"102672"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Messenger and message: Uncovering the roles, rhythm and regulation of extracellular vesicles in plant biotic interactions.\",\"authors\":\"Serena Agnes Qiao, Ronelle Roth\",\"doi\":\"10.1016/j.pbi.2024.102672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) are membrane-delimited nanoparticles found in every kingdom of life and are known to mediate cell-cell communication in animal systems through the trafficking of proteins and nucleic acids. Research into plant and microbial EVs suggests that these have similar transport capacity, and moreover are able to mediate signalling not only within an organism but also between organisms, acting between plants and their microbial partners in cross-kingdom signalling. Here, we review recent research exploring the roles of these EVs, both plant and microbial, highlighting emerging trends of functional conservation between species and across kingdoms, complemented by the heterogeneity of EV subpopulations at the organism level that places EVs as powerful regulatory mechanisms in plant biotic interactions.</p>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"83 \",\"pages\":\"102672\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pbi.2024.102672\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pbi.2024.102672","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Messenger and message: Uncovering the roles, rhythm and regulation of extracellular vesicles in plant biotic interactions.
Extracellular vesicles (EVs) are membrane-delimited nanoparticles found in every kingdom of life and are known to mediate cell-cell communication in animal systems through the trafficking of proteins and nucleic acids. Research into plant and microbial EVs suggests that these have similar transport capacity, and moreover are able to mediate signalling not only within an organism but also between organisms, acting between plants and their microbial partners in cross-kingdom signalling. Here, we review recent research exploring the roles of these EVs, both plant and microbial, highlighting emerging trends of functional conservation between species and across kingdoms, complemented by the heterogeneity of EV subpopulations at the organism level that places EVs as powerful regulatory mechanisms in plant biotic interactions.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.