{"title":"基因密码的工程。","authors":"Yael Cohen, Lital Alfonta","doi":"10.1016/j.copbio.2024.103245","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic code is a universally conserved mechanism that translates genetic information into proteins, consisting of 64 codons formed by four nucleotide bases. With a few exceptions, the genetic code universally encodes 20 canonical amino acids (AAs) and three stop signals, with many AAs represented by multiple codons. Genetic engineering has expanded this system through approaches like codon reassignment and synthetic base pair introduction, allowing for the incorporation of noncanonical AAs (ncAAs) into proteins, known as genetic code expansion (GCE). These ncAAs add novel functionalities, such as bio-orthogonal handles, fluorophores, and redox-active ncAAs, enhancing the diversity of proteins. Recent advancements include genome-wide recoding, evolution of orthogonal translation components, and synthetic genetic alphabet, with a focus on improving translational efficiency and reducing off-target effects. This review emphasizes strategies for modifying nucleotides, reassessing codons, and engineering translational enzymes, highlighting innovations that tackle challenges in GCE and promote new protein chemistries and biotechnological applications.</p>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"91 ","pages":"103245"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of the genetic code.\",\"authors\":\"Yael Cohen, Lital Alfonta\",\"doi\":\"10.1016/j.copbio.2024.103245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genetic code is a universally conserved mechanism that translates genetic information into proteins, consisting of 64 codons formed by four nucleotide bases. With a few exceptions, the genetic code universally encodes 20 canonical amino acids (AAs) and three stop signals, with many AAs represented by multiple codons. Genetic engineering has expanded this system through approaches like codon reassignment and synthetic base pair introduction, allowing for the incorporation of noncanonical AAs (ncAAs) into proteins, known as genetic code expansion (GCE). These ncAAs add novel functionalities, such as bio-orthogonal handles, fluorophores, and redox-active ncAAs, enhancing the diversity of proteins. Recent advancements include genome-wide recoding, evolution of orthogonal translation components, and synthetic genetic alphabet, with a focus on improving translational efficiency and reducing off-target effects. This review emphasizes strategies for modifying nucleotides, reassessing codons, and engineering translational enzymes, highlighting innovations that tackle challenges in GCE and promote new protein chemistries and biotechnological applications.</p>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"91 \",\"pages\":\"103245\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.copbio.2024.103245\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.copbio.2024.103245","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The genetic code is a universally conserved mechanism that translates genetic information into proteins, consisting of 64 codons formed by four nucleotide bases. With a few exceptions, the genetic code universally encodes 20 canonical amino acids (AAs) and three stop signals, with many AAs represented by multiple codons. Genetic engineering has expanded this system through approaches like codon reassignment and synthetic base pair introduction, allowing for the incorporation of noncanonical AAs (ncAAs) into proteins, known as genetic code expansion (GCE). These ncAAs add novel functionalities, such as bio-orthogonal handles, fluorophores, and redox-active ncAAs, enhancing the diversity of proteins. Recent advancements include genome-wide recoding, evolution of orthogonal translation components, and synthetic genetic alphabet, with a focus on improving translational efficiency and reducing off-target effects. This review emphasizes strategies for modifying nucleotides, reassessing codons, and engineering translational enzymes, highlighting innovations that tackle challenges in GCE and promote new protein chemistries and biotechnological applications.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.