配体取代驱动SO4单元在短波长区域增强各向异性的新范式。

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Central Science Pub Date : 2024-11-27 eCollection Date: 2024-12-25 DOI:10.1021/acscentsci.4c01401
Chenhui Hu, Huimin Li, Guangsheng Xu, Zhihua Yang, Jian Han, Shilie Pan
{"title":"配体取代驱动SO4单元在短波长区域增强各向异性的新范式。","authors":"Chenhui Hu, Huimin Li, Guangsheng Xu, Zhihua Yang, Jian Han, Shilie Pan","doi":"10.1021/acscentsci.4c01401","DOIUrl":null,"url":null,"abstract":"<p><p>For non-π-conjugated [SO<sub>4</sub>] units, it is challenging to generate sufficient birefringence, owing to the high symmetry of the regular tetrahedron. Unlike the traditional trial-and-error approach, we propose a new paradigm for birefringence engineering to tune the optical properties based on [SO<sub>4</sub>] units. Through the strategy of ligand substitution, we can predict its effect on the band gap and anisotropy. Theoretical evaluations reveal generalized results that the anisotropic electron distribution of new functional groups induced by the suitable ligand substitution contributes to the band gap and birefringence. To further validate the correctness of the paradigm, we experimentally synthesized and characterized nine novel compounds with selected functional modules. By the new paradigm of ligand substitution, they can reach up to 4-6 times the birefringence of the corresponding sulfate and maintain the wide bandgap. Through rational design, (CN<sub>4</sub>H<sub>7</sub>)SO<sub>3</sub>NH<sub>2</sub> exhibits about 35 times the birefringence of Li<sub>2</sub>SO<sub>4</sub>, which is a significant order of magnitude improvement and verifies the superiority of our proposed paradigm. This work provides a new paradigm for the modification to the non-π-conjugated group and will guide and accelerate the exploration of novel birefringent crystals in the short-wavelength region.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2312-2320"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673188/pdf/","citationCount":"0","resultStr":"{\"title\":\"The New Paradigm of Ligand Substitution-Driven Enhancement of Anisotropy from SO<sub>4</sub> Units in Short-Wavelength Region.\",\"authors\":\"Chenhui Hu, Huimin Li, Guangsheng Xu, Zhihua Yang, Jian Han, Shilie Pan\",\"doi\":\"10.1021/acscentsci.4c01401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For non-π-conjugated [SO<sub>4</sub>] units, it is challenging to generate sufficient birefringence, owing to the high symmetry of the regular tetrahedron. Unlike the traditional trial-and-error approach, we propose a new paradigm for birefringence engineering to tune the optical properties based on [SO<sub>4</sub>] units. Through the strategy of ligand substitution, we can predict its effect on the band gap and anisotropy. Theoretical evaluations reveal generalized results that the anisotropic electron distribution of new functional groups induced by the suitable ligand substitution contributes to the band gap and birefringence. To further validate the correctness of the paradigm, we experimentally synthesized and characterized nine novel compounds with selected functional modules. By the new paradigm of ligand substitution, they can reach up to 4-6 times the birefringence of the corresponding sulfate and maintain the wide bandgap. Through rational design, (CN<sub>4</sub>H<sub>7</sub>)SO<sub>3</sub>NH<sub>2</sub> exhibits about 35 times the birefringence of Li<sub>2</sub>SO<sub>4</sub>, which is a significant order of magnitude improvement and verifies the superiority of our proposed paradigm. This work provides a new paradigm for the modification to the non-π-conjugated group and will guide and accelerate the exploration of novel birefringent crystals in the short-wavelength region.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"10 12\",\"pages\":\"2312-2320\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscentsci.4c01401\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01401","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于非π共轭[SO4]单元,由于正四面体的高度对称性,产生足够的双折射是具有挑战性的。与传统的试错方法不同,我们提出了一种新的双折射工程范式,以[SO4]单元为基础调整光学特性。通过配体取代策略,我们可以预测其对带隙和各向异性的影响。理论评价表明,合适的配体取代导致的新官能团的各向异性电子分布有助于带隙和双折射。为了进一步验证范式的正确性,我们通过实验合成并表征了9种具有选定功能模块的新化合物。通过新的配体取代模式,它们可以达到相应硫酸盐的4-6倍双折射率,并保持较宽的带隙。通过合理的设计,(CN4H7)SO3NH2的双折射率约为Li2SO4的35倍,这是一个显着的数量级提高,验证了我们提出的范例的优越性。这项工作为非π共轭基团的修饰提供了一个新的范例,并将指导和加速短波区的新型双折射晶体的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The New Paradigm of Ligand Substitution-Driven Enhancement of Anisotropy from SO4 Units in Short-Wavelength Region.

For non-π-conjugated [SO4] units, it is challenging to generate sufficient birefringence, owing to the high symmetry of the regular tetrahedron. Unlike the traditional trial-and-error approach, we propose a new paradigm for birefringence engineering to tune the optical properties based on [SO4] units. Through the strategy of ligand substitution, we can predict its effect on the band gap and anisotropy. Theoretical evaluations reveal generalized results that the anisotropic electron distribution of new functional groups induced by the suitable ligand substitution contributes to the band gap and birefringence. To further validate the correctness of the paradigm, we experimentally synthesized and characterized nine novel compounds with selected functional modules. By the new paradigm of ligand substitution, they can reach up to 4-6 times the birefringence of the corresponding sulfate and maintain the wide bandgap. Through rational design, (CN4H7)SO3NH2 exhibits about 35 times the birefringence of Li2SO4, which is a significant order of magnitude improvement and verifies the superiority of our proposed paradigm. This work provides a new paradigm for the modification to the non-π-conjugated group and will guide and accelerate the exploration of novel birefringent crystals in the short-wavelength region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信