Zhibin Guo, Xuanyu Wang, Yi Han, Siyong Shen, Peng Tian, Yuchen Hu, Zexuan Ding, Qunfeng Fu, Zhibo Liu
{"title":"靶向放射性核素疗法激活治疗转移的前药。","authors":"Zhibin Guo, Xuanyu Wang, Yi Han, Siyong Shen, Peng Tian, Yuchen Hu, Zexuan Ding, Qunfeng Fu, Zhibo Liu","doi":"10.1021/acscentsci.4c01369","DOIUrl":null,"url":null,"abstract":"<p><p>Over 90% of cancer patients succumb to metastasis, yet conventional frontline therapy struggles to halt the progression of metastatic tumors. Targeted radionuclide therapy, which delivers radiation precisely to tumor sites, shows promise for treating metastasis. The rational design of a prodrug activation platform using radionuclides would be an ideal approach to synergize chemotherapy with targeted radionuclide therapy, yet it has not been established. Here, we present targeted radionuclide therapy-induced cleavage chemistry that enables the controlled release of oxaliplatin and its axis ligands from oxaliplatin(IV) complexes in living systems. Of note, this strategy demonstrates feasibility over clinically relevant β-emitting radionuclides and exhibits dose dependence. These advantages were taken into account, and a Lutetium-177-activatable platinum(IV) based prodrug system was designed that could achieve localized activation at the tumor site with high efficiency, thereby suppressing subcutaneous and metastatic 4T1 tumors. In summary, our approach highlights the potential of radionuclides as reaction switches, bridging the gap between the radiotherapy-induced reaction and internal radiation. It may provide a new perspective for future combination therapy.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2321-2330"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672548/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted Radionuclide Therapy Activates Prodrugs for Treating Metastasis.\",\"authors\":\"Zhibin Guo, Xuanyu Wang, Yi Han, Siyong Shen, Peng Tian, Yuchen Hu, Zexuan Ding, Qunfeng Fu, Zhibo Liu\",\"doi\":\"10.1021/acscentsci.4c01369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over 90% of cancer patients succumb to metastasis, yet conventional frontline therapy struggles to halt the progression of metastatic tumors. Targeted radionuclide therapy, which delivers radiation precisely to tumor sites, shows promise for treating metastasis. The rational design of a prodrug activation platform using radionuclides would be an ideal approach to synergize chemotherapy with targeted radionuclide therapy, yet it has not been established. Here, we present targeted radionuclide therapy-induced cleavage chemistry that enables the controlled release of oxaliplatin and its axis ligands from oxaliplatin(IV) complexes in living systems. Of note, this strategy demonstrates feasibility over clinically relevant β-emitting radionuclides and exhibits dose dependence. These advantages were taken into account, and a Lutetium-177-activatable platinum(IV) based prodrug system was designed that could achieve localized activation at the tumor site with high efficiency, thereby suppressing subcutaneous and metastatic 4T1 tumors. In summary, our approach highlights the potential of radionuclides as reaction switches, bridging the gap between the radiotherapy-induced reaction and internal radiation. It may provide a new perspective for future combination therapy.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"10 12\",\"pages\":\"2321-2330\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscentsci.4c01369\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01369","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeted Radionuclide Therapy Activates Prodrugs for Treating Metastasis.
Over 90% of cancer patients succumb to metastasis, yet conventional frontline therapy struggles to halt the progression of metastatic tumors. Targeted radionuclide therapy, which delivers radiation precisely to tumor sites, shows promise for treating metastasis. The rational design of a prodrug activation platform using radionuclides would be an ideal approach to synergize chemotherapy with targeted radionuclide therapy, yet it has not been established. Here, we present targeted radionuclide therapy-induced cleavage chemistry that enables the controlled release of oxaliplatin and its axis ligands from oxaliplatin(IV) complexes in living systems. Of note, this strategy demonstrates feasibility over clinically relevant β-emitting radionuclides and exhibits dose dependence. These advantages were taken into account, and a Lutetium-177-activatable platinum(IV) based prodrug system was designed that could achieve localized activation at the tumor site with high efficiency, thereby suppressing subcutaneous and metastatic 4T1 tumors. In summary, our approach highlights the potential of radionuclides as reaction switches, bridging the gap between the radiotherapy-induced reaction and internal radiation. It may provide a new perspective for future combination therapy.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.