{"title":"亲水乙二醇片段:影响紫杉醇前药纳米组件治疗指标的决定因素。","authors":"Yaqi Li, Yixin Sun, Qing Wang, Shuo Wang, Cuiyun Liu, Yuetong Huang, Wenxin Zhong, Xiyan Wang, Wenjing Wang, Shiyi Zuo, Xianbao Shi, Xiaohui Pu, Jin Sun, Zhonggui He, Bingjun Sun","doi":"10.1021/acscentsci.4c01004","DOIUrl":null,"url":null,"abstract":"<p><p>Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs. Herein, hydrophilic ethylene glycol fragments were inserted between the modification modules and the response modules, and the important effects of hydrophilic fragments on the assembly, drug release, and therapeutic index of the prodrugs were investigated. Notably, the introduction of hydrophilic fragments affected the intermolecular forces of the prodrugs and increased the interaction of hydrogen bonding. In addition, hydrophilic fragments significantly improved the redox drug release profiles, which affected the therapeutic index of the prodrug nanoassemblies. PTX-SS-OA NPs with hydrophilic fragments exhibited increased redox sensitivity, enhanced cytotoxicity, and superior antitumor efficacy. In comparison, PTX-SS-OAL NPs without hydrophilic fragments showed limited redox sensitivity and cytotoxicity but displayed better safety. Overall, the hydrophilic fragment is a critical determinant in modulating the therapeutic index of the prodrug nanoassemblies, which contributes to the development of advanced prodrug nanodelivery systems.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2253-2265"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydrophilic Ethylene Glycol Fragments: A Determinant Affecting the Therapeutic Index of Paclitaxel Prodrug Nanoassemblies.\",\"authors\":\"Yaqi Li, Yixin Sun, Qing Wang, Shuo Wang, Cuiyun Liu, Yuetong Huang, Wenxin Zhong, Xiyan Wang, Wenjing Wang, Shiyi Zuo, Xianbao Shi, Xiaohui Pu, Jin Sun, Zhonggui He, Bingjun Sun\",\"doi\":\"10.1021/acscentsci.4c01004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs. Herein, hydrophilic ethylene glycol fragments were inserted between the modification modules and the response modules, and the important effects of hydrophilic fragments on the assembly, drug release, and therapeutic index of the prodrugs were investigated. Notably, the introduction of hydrophilic fragments affected the intermolecular forces of the prodrugs and increased the interaction of hydrogen bonding. In addition, hydrophilic fragments significantly improved the redox drug release profiles, which affected the therapeutic index of the prodrug nanoassemblies. PTX-SS-OA NPs with hydrophilic fragments exhibited increased redox sensitivity, enhanced cytotoxicity, and superior antitumor efficacy. In comparison, PTX-SS-OAL NPs without hydrophilic fragments showed limited redox sensitivity and cytotoxicity but displayed better safety. Overall, the hydrophilic fragment is a critical determinant in modulating the therapeutic index of the prodrug nanoassemblies, which contributes to the development of advanced prodrug nanodelivery systems.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"10 12\",\"pages\":\"2253-2265\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscentsci.4c01004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrophilic Ethylene Glycol Fragments: A Determinant Affecting the Therapeutic Index of Paclitaxel Prodrug Nanoassemblies.
Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs. Herein, hydrophilic ethylene glycol fragments were inserted between the modification modules and the response modules, and the important effects of hydrophilic fragments on the assembly, drug release, and therapeutic index of the prodrugs were investigated. Notably, the introduction of hydrophilic fragments affected the intermolecular forces of the prodrugs and increased the interaction of hydrogen bonding. In addition, hydrophilic fragments significantly improved the redox drug release profiles, which affected the therapeutic index of the prodrug nanoassemblies. PTX-SS-OA NPs with hydrophilic fragments exhibited increased redox sensitivity, enhanced cytotoxicity, and superior antitumor efficacy. In comparison, PTX-SS-OAL NPs without hydrophilic fragments showed limited redox sensitivity and cytotoxicity but displayed better safety. Overall, the hydrophilic fragment is a critical determinant in modulating the therapeutic index of the prodrug nanoassemblies, which contributes to the development of advanced prodrug nanodelivery systems.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.